IERSITY OF CALIFORNIA

ersity of califormia

LIbrary of the university of gallfornia

libraby of the university of callformia

LIBRARY OF THE UNIVERSITY OF GALIFORNIA

libraby of the uniyersity of callformia

LIBRARY OF THE UNIVERSITY OF CALIFORNIA

LIBRARY OF THE U

LBRARY OF THE

IIBRARY OF THE UN

LIBRARY OF THE UNIVERSITY OF CALIFORMIA

LIBRARY OF THE UNIVERSITY OF GALIFORHIA
LIBRARY OF THE UNIVERSITY OF CALIFORIIA

LIBRARY OF THE UHIVERSITY OF CALIFORMIA

LIBRARY OF THE UNIVERSITY OF CALIFO

LIBRARY OF THE UNIVERSITY OF CALIFO

LIBRARY OF THE UNIVERSITY OF GALIFORMIA

LIBRARY OF THE UNIVERSITY OF GALIFORIIA

e

LIBRARY OF THE UNIVERSITY OF CALIFO

Ches

THERMOCHEMISTRY. By JUliUs Thomsen, late Professor of Chemistry in the University of Copenhagen. Translated by Katharine A. Burke, B.Sc. (Lond.). Crown 8 vo, 85 . net.
A SYSTEM OF PHYSICAL CHEMISTRY. By Willam C. McC. Lewis, M.A. (R.U.I.), D.Sc. (Liv.), Brunner Proftssor of Physical Chemistry in the University of Liverpool ; formerly Lecturer in Physical Chemistry, University College, London. With numerous Diagrams. 2 vols. Crown 8 vo , 9s. 6d. net each.
THE PHYSICAL PROPERTIES OF COLLOIDAL SOLUTIONS. By E. F. Burton, B.A. (Cantab.), Ph.D. (Toronto), Associate Professor of Physics, University of Toronto. With 18 Illustrations. $8 \mathrm{vo}, 6 \mathrm{~s} .6 \%$ net.
NEW IDEAS ON INORGANIC GHEMISTRY. By Dr. A. Werner, Professor of Chemistry in the University of Zurich. Translated, with the Author's sanction, by Edgar Percy Hedley, Ph.D., A.R.C.Sc.I. 8vo, 8s. net.
NEW REDUCTION METHODS IN VOLUMETRIC ANALYSIS. A Monograph. By Edmund Knecht, Ph.D., M.Sc.Tech., F.I.C., Professor of Technological Chemistry at the Victoria University of Manchester, and Eva Hibbert, Demonstrator in Chemistry, Municipal School of Technology, Manchester. Crown 8vo, 3s. 6才. net.
ANALYTICAL MECHANICS, comprising the Kinetics and Statics of Solids and Fluids. By Edivin H. Barton, D.Sc. (Lond.), F.R.S.E., A.M.I.E.E., Professor of Experimental Physics, University College, Nottingham. 8 vo , 10s. 6 d . net.
A HISTORY OF THE CAVENDISH LABORATORY, 1871-1910. With 3 Portraits in Collotype and 8 other Illustrations. 8 vo, 7 s. $6 d$. net.

```
LONGMANS, GREEN AND CO.
```

LONDON, NEW YORK, BOMBAY, CALCUTTA, ANI MAURAS

TABLES OF

PHYSICAL AND CHEMICAL CONSTANTS
 and some mathematical functions

BY
G. W. C. KAYE
M.A., D.SC., CAPT. R.E. (T.)
THE NATIONAL PHYSICAL LABORATORY

AND

T. H. LABY, м.A.

PROEFSSOR OF NATURAL PHILOSOPHY, THE UNIVFRSITY OF MELBOURNE

TIIIRD EDITION
L. ONGMANS, GREEN AND CO.

39 PATERNOSTER ROW, LONDON Fourth avenue \& 30 :h Street, new york
bombay, calcutta, and madras
1918

Prisics Dept

PREFACE TO FIRST EDITION

THE need for a set of up-to-date English physical and chemical tables of convenient size and moderate price has repeatedly impressed us during our teaching and laboratory experience. We have accordingly attempted in this volume to collect the more reliable and recent determinations of some of the important physical and chemical constants.

To increase the utility of the book, we have inserted, in the case of many of the sections, a brief resume containing references to such books and original papers as may profitably be consulted.

Every effort has been made to keep the material up to date ; in many cases a fult reference to the original paper is given, while, failing such reference, the year of publication is almost always indicated.

The scope of the volume calls for little comment on our part. We have dipped a little into Astronomy, Engineering, and Geology in so far as they border on Physics and Chemistry. It will be noticed that considerable space has been allotted to Radioactivity and Gaseous Ionization : it is hoped that the collection of data, which we believe to be the first of the kind, will be of assistance to the numerous workers in a field whose phenomenal and somewhat transitional growth is a little dismaying from our present point of view.

Attention has been paid to the setting and accuracy of the mathematical tables; these are included merely to facilitate calculations arising out of the use of the book, and limitations of space have cut out all but a few of the more essential functions. The convenience of the student of the newer physics has been studied by the inclusion of a table of values of e^{-x} reduced from Newman's original results.

We began this book while at the Cavendish Laboratory, Cambridge, and Dr. G. A. Carse shared in its inception. To Mr. G. F. C. Searle, F.R.S., we feel we owe much for his encouragement and suggestions when the scope of the book was under consideration. We record gratefully the help of a number of frien ls who have seen the proof-sheets of sections dealing with subjects with which their names are associated. Dr. J. A. Harker, F.R.S., and Mr. R. S. Whipple read the sections on Thermometry; Mr. F. E. Smith revised the account of Electrical Standards, and Mr. C. C.

Paterson that of Photometry ; Mr. A. Campbell criticized the section on Magnetism ; and Professor Callendar, Principal Griffiths, and Dr. Chree have elucidated various points in Heat and Terrestrial Magnetism.

We owe thanks to Dr. Glazebrook for his permission to utilize the values of a number of constants recently determined at the National Physical Laboratory. Finally, we are greatly indebted to Mr. E. F. F. Kaye, M.Sc., who has given us valuable assistance in preparing the manuscript and revising the proof-sheets.

It was decided to keep the volume within reasonable limits, partly for the reader's convenience, and partly with the hope that the task of subjecting it to frequent revision in the future might not be impossible. We have consequently had to pick and choose our data, and it is scarcely likely that our selection will meet every individual requirement. That some sections are inadequately treated we fully realize, and we shall be very glad to receive suggestions and to be informed of any mistakes which, despite every care, have eluded us.

G. W. C. K.
T. H. L.

September, 19 II.

PREFACE TO SECOND EDITION

WE regret that the difficulties of the times have not permitted the complete revision which we had contemplated. We have had to content ourselves with removing those mistakes of which, by the courtesy of many readers, we had become aware, and inserting a number of the more fundamental constants which contemporary research has yielded since 1911. A few tables have been thoroughly revised.

> G. W. C. K.
> T. H. L.

September, 1916.

PREFACE TO THIRD EDITION

In the few months that have elapsed since the publication of the last edition, we have not found it possible to do more than bring a few primary constants up to date.

G. W. C. K.
T. H. L.

CONTENTS

FAGES
General Physics, Astronomy, Etc. 1-43
Heat $44-66$
SOUND 67-68
Light 69-80
Electricity $8 \mathrm{I}-88$
Magnetism $89-92$
Radioactivity and Gaseous Ionization 93-108
CHEMISTRY 109-128
Mathematical Tables 129-147
Index 149-153

[^0]
Abstract

THE ELEMENTS IN THE ORCER OF ATOMIC WEIGHTS（1918）

$\begin{aligned} & \text { di } \\ & \text { 最 } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Atomic } \\ & \text { Weight. } \end{aligned}$	First isolated by	Date．	$\begin{aligned} & \text { 迫 } \\ & \text { 㤩 } \end{aligned}$	Atomic Weight	First isolated by	Date．
H	1.008	Cavendish	1766	Ru	101×7	Claus	1845
He	4＊00	Ramsay \＆Cleve＊	1895	Rh	102．9	Wollaston	1 ¢03
Li	6.94	Arfvedson	1817	Pd	1067	Wollaston	1803
Be§	$9{ }^{11}$	Wöhler and Bussy	1828	Ag	107.88		P．
B	110	Gay－Lussac\＆Thénard	1808	Cd	112.40	Stromeyer	1817
C	12.005		P．	In	114.8	Reich and Richter	1863
N	14.01	Rutherford	1772	Sn	118.7		P．
0	16.00	Priestley and Scheele	1774	Sb	120.2	Basil Valentine	15 centy．
F	19.0	Moissan	1886	1	126.92	Courtois	1811
Ne	20.2	Ramsay and Travers	1898	Te	127.5	v．Reichenstein	1782
Na	23.0	Davy	1807	Xe	130.2	Ramsay and Travers	1898
Mg	24.32	Liebig and Bussy	1850	Cs	$132 \cdot 81$	Bunsen and Kirchhoff	1861
AI	$27 \cdot 1$	Wöhler	1827	Ba	137.37	Davy	1808
Si	28.3	Berzelius	1823	La	139°	Mosander	1839
P	$3 \mathrm{r}^{\circ} \mathrm{O} 4$	Brand	1674	Ce	140.25.	Mosander	1839
5	32.06	－	P．	Pr	140.9	Auer von Welsbach	1885
Cl	$35 \cdot 46$	Scheele	1774	Nd	$144 * 3$	Auer von Welsbach	1885
K	39：10	Davy	1807	Sa	1504	L．de Boisbaudran	1879
A	39.88	Rayleigh \＆Ramsay	18.4	Eu	152°	Demarçay	1971
Ca	40．07	Davy	1808	Gd	1573	Marignac	1886
Sc	$44^{\circ} \mathrm{I}$	Nilson and Cleye	1879	Tb	159．2	Mosander	1843
Ti	48．1	Gregor	1789	Dy	162.5	U．\＆D．	1907
V	51°	Berzelius	1831	Ho	163%	L．de Boisbaudran	1886
Cr	52.0	Vauquelin	1797	Er	1677	Mosander	1843
Mn	54.93	Gahn	1774	Tm	168.5	Cleve	1879
Fe	55.84	－	P．	Yb	173.5	Marignac	1878
Ni	58.68	Cronstedt	1751	Lu	175°	Urbain	1908
Co	$58 \cdot 97$	Brand	1735	Ta	181.5	Eckeberg	1802
Cu	63.57	－	P．	W	184°	Bros．d＇Elhujar	1783
Zn	$65 \cdot 37$	Ment．by B．Valentine	15 centy．	Os	$190^{\circ} 9$.	Smithson Tennant	1804
Ga	$69^{\circ} 9$	L．de Boisbaudran	1875	Ir	193.1	Smithson Tennant	1804
Ge	72.5	Winkler	1886	Pt	$195{ }^{\circ} 2$	－ 16	16 centy．
As	74.95	Albertus Magnus	13 centy．	Au	197.2	IVd by Theophastus	P．
Se	$79^{\circ} 2$	Berzelius	1817	Hg	$200 \cdot 6$	Md．by Theophrastus	$300 \mathrm{B.C}$ ．
Br	79.92	Bulard	1826	TI	$204^{\circ} \mathrm{O}$	Crookes	1861
Kr	82.92	Ramsay and Travers	1898	Pb	207.20	Mcntd．by Pliny	1.
Rb	$85 \cdot 45$	Bunsen and Kirchhoff	1861	Bi	208．0	Mid．by B．Valentine	15 centy．
Sr	$87 \cdot 63$	Davy	1808	Nt	222	M．\＆Mme．Curie	1900
Y	88\％	Wöhler	1828	Ra	226.0	Curies and Bemont	1902
Zr	90.6	Berzclius	1825	Th	232.4	Berzelius	1828
Nb	93^{\prime} I 96	Ha：chett	1801	U	$238 \cdot 2$	Peligot	1841

C.G.S. UNITS AND DIMENSIONS

References: Mach, "Science of Mechanics;" Everett, "C.G.S. System of Units;" Maxwell "Theory of Heat."

The metric standards of length and mass are kept at the International Bureau of Weights and Measures in the Pavillon de Breteuil, Sèvres, near Paris. The Bureau is jointly maintained by the principal civilized governments as members of the Metric Convention. The use of metric weights and measures was legalized in the United Kingdom in 1897.

LENGTH

Unit-the centimetre, $1 / 100$ of the international metre, which is the distance, at the melting-point of ice, between the centres of two lines engraved upon the polished "neutral web" surface of a platinum-iridium bar of a nearly X-shaped section, called the International Prototype Metre.

The alloy of 90 Pt , 10 Ir used (also for the International Kilogramme) has not a large expansion coefficient (see p. 53), is hard and durable, and was artificially aged. Pt-Ir copies of this metre, called National Prototype Metres, were made at the same time, and distributed by lot about 1889 to the different governments. The international metre is a copy of the original Borda platinum standard - the mètre des archives. This was intended to be one tenmillionth of the quadrant from the equator to the pole through Paris, and was legalized in 1795 by the French Republic. But as the value of a quadrant came to be more accurately deternined, and moreover is changing, the actual bar constructed was made the standard.*

The international prototype metre has been measured (1894 and 1907) in terms of the wavelengths of the cadmium rays (see p. 75), and equals $1,553,164 \cdot 1$ wave-lengths of the red ray, in dry air at 15° C. (H. Scale) and 760 mm . pressure. (See Michelson's "Light Waves," 1903.)

References: Guillaume, "La Convention du Mètre," and Chree, Phil. Mag., 1901.

MASS

Unit-the gramme, $1 / 1000$ of the International Prototype Kilogramme, which is the mass of a cylinder of platinum-iridium.

The international kilogramme is a copy of the original Borda platinum kilogramme-the kilogramme des archives-which was intended to have the same mass as that of a cubic decimetre of pure water at the temperature of its maximum densily. More exact measurements revealed the incorrectness of the relation (see p. 10), and so the kilogramme was subsequently defined as above.

As with the metre, Pt-Ir copies of the international standard-National Prototype Kilo-grammes-have been distributed to the different governments.

tIME

Unit-the second, which may be defined simply as $1 / 86,164 \% 0$ of a sidereal day. For all practical purposes the sidereal day may be regarded as the period of a complete axial rotation $\left(360^{\circ}\right)$ of the earth with respect to the fixed stars. \dagger

The second is usually defined as $1 /(24 \times 60 \times 60)$ of a mean solar day, i.e. $1 / 86,400$ of the average value of the somewhat variable interval (the apparent solar day) between two successive returns of the sun to the meridian (see p. 15).

Strictly, the sidereal day is the interval between two successive transits of the first point of Aries \ddagger across any selected meridian.§ The true period of rotation of the earth is actually about $1 / 100$ second longer than the sidereal day ; the difference arises from the slow and continual change of direction ("precession") of the earth's axis in space.

A tropical or solar year is the average interval between two successive returns of the sun to the first point of Aries; it is found to equal $365^{\prime 2} 2 \mathbf{N}^{22}$ mean solar days. Our modern (Julian) calendar assumes that in 4 successive civil years, 3 consist of 365 days, and 1 of 366 ; the average thus being $365^{\circ 25}$ days. The Gregorian correction (that century years are not to count as leap years unless divisible by 400) reduces this value to $365^{\circ} 2425$ mean solar days, and thus the average civil year is a close approximation to a tropical year.

[^1]
BRITISH UNITS

A sidereal year is the time interval in which the sun appears to perform a complete revolution with reference to the fixed stars ; ie. it is the time in which the earth describes one sidereal revolution round the sun. Owing to precession, a sidereal year is longer than a tropical year.
h. m. s.
Mean solar day $=24 \quad 0 \quad 0 \quad=86,400 \mathrm{secs}$.
Sidereal day $=2356 \quad 4^{\circ 0906}=86,164^{\circ} 0906$ secs.
Tropical year $=j 6 ; 2422$ mean solar days.
Sidereal year $=36.2564 \quad$, \quad " (epoch 1900).
$=366.2564$ sidcreal days.

Reference : Newcomb, "'Astronomy."

BRITISH IMPERIAL STANDARDS.

(From information supplied by Major MacMahon, F.R.S., Board of Trade, Standards Office.)
According to the Weights and Measures Act, 1878, the yard is the distance, at $62^{\circ} \mathrm{F}$., between the central transverse lines in two gold plugs in the bronze bar, called the Imperial Standard Yard, when supported on bronze rollers in such manner as best to avoid flexure of the bar.

The defining lines are situated at the bottom of each of two holes, so as to be in the median plane of the bar, which is of 1 inch square section and 3^{3} inches long. Its composition is 32 Cu , $5 \mathrm{Sn}, 2 \mathrm{Zn}$. Copper alloys are now known not to be suitable for standards of length, and in 1902 a Pt -It X -shaped copy of the yard was made.

The pound is the weight in vacuo of a platinum cylinder called the imperial standard pound.

The imperial standard yard and pound are preserved at the Standards Office of the Board of Trade, Old Palace Yard. A number of official copies have been prepared, and are in the custody of the Royal Society, the Mint, Greenwich Observatory, and the Houses of Parliament.

The gallon contains 10 lbs . weight of distilled water weighed in air against brass weights at a pressure of 30 inches, and with the water and the air at $62^{\circ} \mathrm{F}$.
[NOTE.- No mention is made in the Act of the density of the brass weights, or of the humidity of the air.]

BRITISH AND METRIC EQUIVALENTS

The present legal equivalents are those legalized by the Order in Council of May 19, 1898, and derived at the International Bureau of Weights and Measures, by Benoit in 1895 in the case of the yard and the metre, and by Broch in 1883 for the pound and the kilogramme. (See Trav. et Mém. du Bur. Intl., tomes iv., 1885, and xii., 1902.)

Imperial Standard.

$$
\begin{array}{ll}
1 \text { yard } & = \\
1 \text { pound } & = \\
414399 \text { metre }
\end{array}
$$

(Reciprocal.)
1.093614

2:2046223
[NOTE.-The yard is defined at $62^{\circ} \mathrm{F}$., the metre at $0^{\circ} \mathrm{C}$.]

DERIVED C.G.S. UNITS AND STANDARDS

 GENERAL AND MECHANICAL UNITS
Area:-Unit-the square centimetre.

Volume :-Unit-the cubic centimetre (c.c.). The metric unit is the litre, now defined as the volume of a kilogramme of pure, air-free water at the temperature of maximum density (see p. 22) and 760 mm . pressure (Procès Verbaux, 1901, p. 175). The litre was originally intended to be 1 cubic decimetre or 1000 c.cs. ; the present accepted experimental relation is that I kilogramme of water at $4^{\circ} \mathrm{C}$. and 760 mm . pressure measures 1000.027 c.cs. (see p. 10).

Density :-Unit-grammes per c.c. Specific gravity expresses the density of a substance relative to that of water, and is objectionable in requiring two temperatures to be stated.
Velocity :-Unit-I cm. per second. Angular Velocity :-Units-I radian (57° 296) per sec. ; I revolution per sec.
Acceleration :-Time rate of alteration of velocity. Unit- (Icm. per sec.) per sec. Angular Acceleration :-Units-I radian per sec. ${ }^{2}$; 1 revolution per sec. ${ }^{2}$ Momentum :-Mass multiplied by velocity. Unit-1 gm. $\mathrm{cm} . \mathrm{sec}^{-1}$.
Moment of Momentum :- Momentum multiplied by distance from axis of reference. Unit-1 cm. $2^{2} \mathrm{gm} . \mathrm{sec}^{-1}$.
Moment of Inertia:- $\mathrm{E}^{2} \mathrm{a}^{2}$, where m is the mass of any particle of a body, and d it distance from the axis of reference. Unit-1 $\mathrm{cm} .^{2} \mathrm{gm}$. (see p. 16).
Angular Momentum :- Moment of inertia multiplied by angular velocity round axis of reference. Unit- $1 \mathrm{~cm} .^{2} \mathrm{gm}$. sec..$^{-1}$.
Force:-Measured by the acceleration it produces in unit mass. C'nit-the dyne $=\mathrm{cm} . \mathrm{gm} . / \mathrm{sec}^{2}{ }^{2}$ Gravitational minit-the weight of I gram $=\sigma$ dsncs.
Couple, Torque, Turning Moment:-Force multiplied by distance from point of reference. Unit-1 dyne cm .
Work:-Force multiplied by distance through which point of application of force moves in direction of force. Unit-the erg $=1$ dyne $\mathrm{cm} . ; \mathrm{I}$ joule $=10^{7}$ ergs. [r calorie $=4 \cdot 18$ jouies]. Gravitational unit-weight of $1 \mathrm{gm} . \times 1 \mathrm{~cm} .=g$ dyne $\mathrm{cms}=$.$g ergs.$
Energy:-Measured by the work a body can do by reason of either (r) its motion-Kinetic Energy ($=m \nu^{2} / 2$) or (2) its position-Potential Energy. Unit-the erg. (See "Work.") I Board of Trade Unit = I kilowatt hour = $3^{.6} \times 10^{6}$ watt-secs.
Power:-Work per unit time. Unit-1 erg per sec. I watt $=10^{7} \mathrm{ergs}$ per sec. $=\mathrm{I}$ joule per sec. $=\mathrm{I}$ volt-amifere. I kilowatt $=\mathrm{r} \cdot 3 \dagger$ horse-power.
Pressure, Stress:-Force per unit area. Unit-1 dyne per cm. ${ }^{2} 1$ megabar $=10^{\circ}$ dynes per cm. $.^{2}=750^{*} \mathrm{~mm}$. mercury at $0^{\circ} \mathrm{C}$., lat. 45°, and sea-level $(g=9806)$. I atmosphere $=760 \mathrm{~mm}$. mercury at $\circ^{\circ} \mathrm{C}$., lat. 45°, and sea-level $=750^{\circ} 4 \mathrm{~mm}$. mercury at $0^{\circ} \mathrm{C}$. in London $=\mathrm{r}^{\circ} \mathrm{O}_{3} 2 \times 10^{6}$ dynes per $\mathrm{cm} .^{2}=14^{\prime} 7 \mathrm{lbs}$. per inch ${ }^{2}$ $=0.94$ ton per foot ${ }^{2}$.

- Correct to 1 part in 5000 .

Elasticity :-Ratio of stress to resulting strain. Unit-I dyne per $\mathrm{cm} .^{2}$, since the dimensions of a strain are zero.

HEAT UNITS

Temperature :-The melting-point of pure ice under 1 atmosphere is defined as $0^{\circ} \mathrm{C}$., and the boiling-point of water under I atmosphere as $100^{\circ} \mathrm{C}$. This fundamental interval is divided into 100 parts by use of the constant-volume hydrogen thermometer (see p. 44) ; each part is a degree Centigrade. Dimensions of temperature are not required, as it is defined independently of mass, length, and time.

Heat :-Dynamical unit-the erg. Thermal unit-the calorie $=$ heat required to raise the temperature of I gramme of water from $t^{\circ} \mathrm{C}$. to $(t+1)^{\circ} \mathrm{C}$. The 20° calorie $\left(t=20^{\circ}\right)=4.180 \times 10^{7}$ ergs. The 15° calorie $\left(t=15^{\circ}\right)=4.184 \times$ 10^{7} ergs. The mean calorie ($=1 / 100$ heat required to raise I gramme of water from 0° to 100° C.) $=4.184 \times 10^{7}$ ergs. (see pp. 55; 56). I watt-minute $=14^{\circ} 3$ calories. The large calorie $=1000$ calories.

Gas Constant R., in $p v=\mathrm{R} \theta / m$, where p is the pressure, v the volume, $\dot{\theta}$ the absolute temperature of a gram-molecule (i.e. m grams) of a gas of molecular weight m. For I gram-molecule of an ideal gas of density p, $\mathrm{R}=\frac{p v^{\prime} \eta l}{\theta}=\frac{p}{\theta} \cdot \frac{112}{\rho}=\frac{1.0132 \times 10^{6} \times 22412}{273^{\circ} 1}=8.15 \times 10^{6} \mathrm{ergs}$ per gnm. mol. (Berthelot, see p. 106). This value is a constant for all ideal gases. To derive R for I gram of a gas, this figure should be divided by the molecular "eight (oxygen =16) of the gas. R has the dimensions of a specific heat in dynamical units.

ELECTRICAL AND MAGNETIC UNITS

Reference:-J. J. Thomson, "Mathematical Theory of Electricity and Magnetism." The fundamental basis of the electrostatic system of units is the repulsive force between two quantities of like electricity. In the electromagnetic system the repulsion between two like magnetic poles is taken as the basis.

The electromagnetic system (or one based on it) is universally employed in electrical engineering ; the electrostatic is used only in certain special cases.

electrostatic units

Quantity or Charge:-Unit-that quantity which placed I cm. distance from an equal like quantity repels it with a force of I dyne.

Current:-Unit-Unit quantity flowing uniformly past a point in unit time.
Potential Difference and Electromotive Force:-Unit-that P.D. which exists between two points when the work done in taking unit quantity from one point to the other is I erg.

Capacity :-Unit-the charge on a conductor which is at unit potential ; or in the case of a condenser, when its plates are at unit P.D.

Dielectric Constant, Inductivity, or Specific Inductive Capacity of a medium is the ratio of the capacity of a condenser having the medium as dielectric, to the capacity of the same condenser with a vacuum as dielectric (p.84).

ELECTROMAGNETIC UNITS

Magnetic Pole Strength or Quantity :-Unit-that quantity which, placed 1 cm . distance from an equal like quantity, repels it with a force of I dyne.

Magnetic Force or Field Strength:-Unit-the force which acts on unit magnetic pole.

Magnetic Moment of magnet $=$ pole strength \times length of magnet.
Intensity of Magnetization = magnetic moment per unit volume.
Permeability of a medium is the ratio of the magnetic induction in the medium to that in the magnetizing field (p. 89).

Susceptibility:-Unit-intensity of magnetization per unit field (p. 89).
Electric Current:-Unit-that current which produces unit magnetic force at the centre of a circle of radius $2 \pi \mathrm{cms}$.

Quantity $=$ current \times time .
Potential and E.M.F. :-Unit-that P.D. which exists between two points when the work done in taking unit quantity from one point to the other is I erg.

Electrostatic Capacity = quantity/potential difference.
Resistance = potential difference/resulting current. (Ohm's law is assumed.)
Conductance:-Reciprocal of resistance.
Specific Resistance :-Resistance of prism of unit area and unit length.
Conductivity:- Keciprocal of specific resistance.
Coefficient of Self-induction of a circuit is the E M.F. produced in it by unit time-rate of variation of the current through it.

Coefficient of Mutual Induction of two circuits is the E.M.F. produced in one by unit time-rate of variation of the current in the other.

PRACTICAL ELECTRICAL UNITS

At an International Conference on Electrical Units and Standards held in London, October, 1908, it was resolved that-
I. The magnitudes of the fundamental electrical units shall, as heretofore, be determined on the electromagnetic system of measurement with reference to the centimetre, gramme, and second (c.g.s.). These fundamental units are (i) the $\mathbf{O h m}$, the unit of electrical resistance, which has the value 10^{9} c.g.s. ; (2) the Ampere, the unit of electric current, which has the value $10^{-1} \mathrm{c} . \mathrm{g.s}$. : (3) the Volt, the unit of electromotive force, which has the value 10^{8} c.g.s. ; (4) the Watt, the unit of power, which has the value 10^{7} c.g.s. [For absolute electrical units, see p. 8.]
2. As a system of units representing the above, and sufficiently near to them to be adopted for the purpose of electrical measurements, and as a basis for legislation, the Conference recommends the adoption of the International Ohm, the International Ampere, and the International Volt.
3. The Ohm is the first primary unit. The Intermational Ohm is defined as the resistance offered to an unvarying electric current by a column of mercury at 0° C., 14.452 I grammes in mass, of a constant cross-section, and of a length of 106.300 cms .
4. The Ampere is the second primary unit. The International Ampere is defined as the unvarying electric current which, when passed through a solution of nitrate of silver in water, in acco:dance with authorized specification, deposits silver at the rate of ool11800 gramme per second.
5. The International Volt is defined as the electical pressure which, when steadily applied to a conductor whose resistance is one International Ohm, will produce a current of one International Ampere.
6. The International Watt is defined as the energy expended per second by an unvarying electric current of one International Ampere under an electric pressure of one International Volt.

DIMENSIONS OF UNITS

The dimensions in terms of length, mass, and time are denoted by the indices given under L, M, and T. Thus the dimensions of power are $\mathrm{L}^{2} \mathrm{MT}^{-3}$.

MECHANICAL AND HEAT UNITS

Quantity.	L. M. T.	Quantity.	L. M. T.	Quantity.	L. M. T.
Length	0	Momentum	1-1	Strain	0
Mass .	- I 0	Moment of mo-		Elasticity	1
Time	$0 \cdot 0$	mentum	1-1	Compressibility	$1-12$
Angle	0 - 0	Moment of in-		Viscosity .	-1 1-1
Surface.	200	ertia.	10	Diffusion	$2 \quad 0-1$
Volume.	3000	Angular mo-		Capillarity	$1-2$
Density.	-3 1 10	mentum.	1-1	Temperature	0 o 0
Velocity.	$0-1$	Force	1-2	Heat*	2 1-2
Angular vel.	$0-1$	Couple, Torque	$1-2$	Thermal Con	
Acceleration	$1 \quad 0-2$	Work, Energy	$1-2$	ductivity*	-3
Angular accele ration.	$0 \quad 0-2$	Power Pressure, Stress	$\left.\begin{array}{rrr} 2 & 1 & -3 \\ -1 & 1 & -2 \end{array} \right\rvert\,$	Entropy*	$2 \quad 1-2$

v, the ratio of the electromagnetic to the electrostatic unit of quantity, is usually taken as 3×10^{10}, and is a pure number (p. 69). (See Rücker, Phil. Mag., 22, 1889.)

Unit.	$\left\lvert\, \begin{gathered} \text { Sym- } \\ \text { bol. } \end{gathered}\right.$	Dimensions.		Relations.				
		$\frac{\text { E.s. Unit. }}{\text { L. M. T. } k \text {. }}$	E.M. Unit. L. M. T.	$\frac{\text { E.S.U. }}{\text { EM. }}$		actical		
Electrical								
Charge or quantity				I/v	coulomb	$=10^{-1}$		
Resistance -	R	${ }_{1}^{1} 101-1$		v^{2}	ohm	$=10^{9}$	$=1.910^{-11}$	
Potential or E.M.F.	E			v		10^{8}	¢0	
Conductivity .	K	2	- $20 \cdot 1-1$	$1 / v^{2}$	"recipro-	10^{-9}	$=9 \times 10^{11}$	
	C		0 2-1	$1 / v^{2}$.	microfarad \ddagger	10^{15}	$=9 \times 10^{58}$	
Self and mutual, $11-10 \quad 2-1 \quad 10 \quad 0 \quad v^{2} \quad$ henry $=10^{9}=\frac{1}{3} \times 10^{-11}$							$\begin{array}{r} \times 10^{-11} \\ \times 10^{20} \end{array}$	
Dielectric constant \dagger. .	k	o	0 2-1	I / v^{2}	-			
Magnetic								
Flux (total lines) N $\frac{1}{2}$ $\frac{1}{2}$ $0-\frac{1}{2}$ $\frac{3}{3}$ $\frac{1}{2}-1$ $\frac{1}{2}$ $1 / 2$								
Induction . . B - $-\frac{1}{2}$ I $0-\frac{1}{2}-\frac{1}{2} \frac{1}{2}$	${ }^{\mathrm{H}}$			$\begin{gathered} 1 / v \\ v \end{gathered}$	$\begin{aligned} & \text { gauss } \\ & \text { gauss } \end{aligned}$		$\begin{aligned} & =3 \times 10^{10} \\ & =\frac{1}{3} \times 10^{-10} \end{aligned}$	
Intensity of magnetization	I	-2 2	$\frac{1}{2} \frac{1}{2}-1$,	-	-		
Permeability	μ	-20	0o 0	v^{2}				
Example:- Dimensions of power $=\mathrm{L}^{2} \mathrm{MT}^{-3}=\mathrm{LT}^{-1}$ [Force]								
$n=33,000 \frac{\mathrm{ft} .}{\mathrm{cm}}\left(\frac{\mathrm{~min} .}{\mathrm{sec} .}\right)^{-1} \cdot \frac{\mathrm{lb} . \text { weight }}{\text { dvene }}=\frac{33,000 \times 30.48}{60} \times 453.6 \times 98 \mathbf{y}$								

ELECTRICAL UNITS

ABSOLUTE DETERMINATIONS OF. ELECTRICAL UNITS

See Baillehache, "Unités Électriques," Paris, 1909, and the "Report of the London Conference" (p.6). The appendix to this report (issued separately, 9 d.) gives full particulars as to the realization of the ampere and ohm, together with the specification of the Weston normal (cadmium) cell.

THE OHM

The mean value $\mathbf{1 0 6 . 2 5} \mathrm{cms}$. of Hg of $I \mathrm{sq} . \mathrm{mm}$. dross-section at $0^{\circ} \mathrm{C}$. may be taken as a measure of the present experimental value of the true ohm, which is equal to 10^{9} E.M. (c.g.s.) units. Compare the international ohm (p.6).

$\mathrm{cm} . / 0^{\circ}$.	Method.	Observer.	$\mathrm{cm} . / 0^{\circ}$.	Method.	Observer.
106.28	Spinning disc	Rayleigh, 1882	106:29	Induced dis-	Glazebrook, '88
106.22	" "	Rayleigh and Mrs. Sedg-		charge Spinning disc	
		$\begin{aligned} & \text { Mrs. Sedg- } \\ & \text { wick, } 1883 \end{aligned}$	$\begin{aligned} & 106.32 \\ & 106 \cdot 27 \end{aligned}$	Spinning disc	V. Jones, 1894 Ayrton and V.
$106 \cdot 32$	Mean result	Rowland, 1887	106.24s		Jones, 1897 Smith, N.P.L.,'14

The 1884 "legal" ohm $=$ "9972 intl. ohm; the B.A._ohm $=9866$ intl. ohm.
THE AMPERE
The electrochemical equivalent of silver is given in milligrams per coulomb (1 ampere for 1 sec .) $=10^{-1}$ E.M. unit of quantity. Mean $={ }^{\circ} 00111821 \mathrm{gm} . / \mathrm{cou}-$ lomb. Compare the international ampere (p. 6).

mg. Ag.	Method.	Observer.	mg. Ag.	Method.	Observer.
111828	Dynamometer	Kohlrausch, '84	1.11821	Dynamometer	Janet, Laporte,
111827					de la Gorce, 1909.
	weigher	$\begin{aligned} & \text { and Lowry, } \\ & 1907 \end{aligned}$	111829	"	$\text { Do, } 1910$

E.M.F. OF WESTON CELL

The electromotive force (E) of the Weston (cadmium) cell in volts (10^{8}. E.M. units) as realized from one of the accepted specifications. The present accepted international value of E is 1.0183 international volts (see p. 6) at $20^{\circ} \mathrm{C}$.

Temperature coefficient.-Over the range 0° to 40°, Wolff (1908) obtained for the E.M.F. at t° -

$$
\mathrm{E}_{t}=\mathrm{E}_{20}-0000406(t-20)-9.5 \times 10^{-7}(t-20)^{2}
$$

E at 20°.	Method.	Observer.	E at 20°.	Method.	Observer.
10185 101822	Intl. ohm and dynamo-	Guthe, 1906 Guillet, 1908	1.01820	Intl. ohm and current weigher	Ayrton, Mather, and Smith, 1908
ror 841	meter	Pellat, 1908	101822		Dorsey, 1911
1.01869	Intl. ohm and current weigher	Janet, Laporte, Jou ust, igo8	I'01834	Intl. ohm and intl. an:pere	Jaeger and v. Steinwehr, 1909

The E.M.F. of the Clark cell $=1.433$ volts at $15^{\circ} \mathrm{C}$. It diminishes by about $1^{1} 2$ parts in 1 coo for $1^{\circ} \mathrm{C}$. rise of temp.

BRITISH INTO METRIC CONVERSION FACTORS

Conversion factors based on the relations given on p. $4 . g$ is taken as 981 $\mathrm{cm} .-\mathrm{sec} .^{-2}$. Reciprocals are given for converting metric into British measure.

British.	Metric.	(Reciprocal.)	British.	Metrio.	(Reciprocal.)
Length -			Force-		
1 inch	2.5400 cm .**	3937 †	${ }_{1}$ poundal $=$	13,825 dynes	7.233×10^{-6}
I y yard	9144 metre*	1.0936	${ }^{1}$ pound wgt. $=$	4.45×10^{5}	2.247×10^{-6}
I mile	I 60093 km .	$\cdot 6214$		dynes	
I sq. inch =	$6.4516 \mathrm{sq} . \mathrm{cm}$	-1550 \dagger	I lb./sq. inch $=$		$145 \times$
Volume -	64516 sq.cm	1550t	Ilb./sq. $\mathrm{inch}=$	$\text { dynes/cm. }{ }^{2}$	$145 \times$
I cubic inch $=$ I cubic foot $=$	16.387 c.c.		" " =	70.31	-1422
I cubic foot $=$ 1 pint $=$	28.317 litre .5682 litre	. 03531 1.7598	Iton/sq. inch $=$	${ }_{1.545 \times 10^{8}}^{\text {gm. }}{ }^{2}$	$6.47 \times$
1 gallon	4.5460 litre \ddagger	-2200 \ddagger	Iton/sq.	dynes/cm. ${ }^{2}$	$647 \times$
mass-			, " =		. 6349
1 grain I oz. (avoir.)	-0648 gram	15.432		k.gm. $/ \mathrm{mm} .^{2}$	
1 oz. (avoir.) $=$ 1 lb.	28.350 grams	- 03527	Work-		
1 lb. 1 ton	4536 k.gm.	$2 \cdot 2046$	I ft.-pound	1 356 joules§	7373
${ }^{1}$ ton ${ }_{\text {Density - }}=$	1016 k.gm.tl	${ }^{\circ} \mathrm{O} 9842$	Power-		
Density - I lb. /cub. ft. =	-1602	62.43	I horse-power =	746 k.watt.	134
	gm. $/ \mathrm{cm} .^{3}$		Heat-		
Velocity1 mile/hour =	$4770 \mathrm{~cm} . / \mathrm{sec}$.	'02237	$\left\{\begin{array}{c} \text { I B. Th. unit } \\ \left(\mathrm{I} \mathrm{lb} ., \mathrm{I}^{\circ} \mathrm{F} .\right) \end{array}\right\}=$	$22^{\circ} 00$ calories	-00397

MISCELLANEOUS DATA

CONVENIENT APFROXIMATE RELATIONS$\begin{aligned} 1 \text { yard } & =1 \text { metre, less } 10 \% \\ 2 \text { lbs. } & =1 \mathrm{k} \text {. gram, }, \\ 2 \text { galls. } & =10 \text { litres, }, \\ 1 \text { ton } & =\left\{\begin{array}{l} \text { i tonne } \\ 1000 \mathrm{k} . \mathrm{gm} .) \end{array}\right\} \text { less } 2 \% \end{aligned}$

SOME BRITISH WEIGHTS AND MEASURES

Useful in photography, etc.
The avoirdupois, troy, and apothecaries grain are the same in weight.
$\begin{aligned} 1 \mathrm{lb} \text {. (avoir.) } & =7000 \text { grains }\end{aligned}=454$ grams

1 oz . (apothe- $\}=480 \quad n=31.1 \quad \%$
If. drachm $3=60$ minims $=3.55$ c.cs.
I fl. oz. $3=8$ fl. drachms $=28.41$ "
1 pint $=20$ fl. ozs. $=568 "$
A 10% solution is

```
I grain in 10 minims of solution
1 oz . (avoir.), 10 fl . ozs.
\(20 z\). " \(\quad 1\) pint
```


* Correct to I part in a million.

\dagger Correct to 3 parts in a million.
\ddagger Owing to the definition of the gallon (see p. 4), this number is dependent on assumed buoyancy and temperature corrections.
$\|$ I tonne $=1000 \mathrm{k} . \mathrm{g} \mathrm{g} \mathrm{n}$.

BRITISH COINAGE			NAUTICAL		
Coin.	Weight.	Diameter.	$\begin{aligned} & \text { I nautical mile }=6082 \cdot 66 \text { feet } \\ & \text { 1 admiralty mile }=6080 \text { feet } \\ & \text { I knot }=1 \text { nautical mile/hour } \\ & \text { I fathom }=6 \text { feet- } \\ & \text { ipoint }=11_{4}^{\perp 0} \end{aligned}$		
sovereign penny halfpenny farthing		$\begin{aligned} & 2.18 \mathrm{~cm} . \\ & 1.2 \text { inch } \\ & 100 " \\ & .8 " \end{aligned}$			
10° Centigrade $=50^{\circ}$ Fahrenheit, whence the following is convenient for transforming room tempcratures :-$5\left(t^{\circ} \mathrm{F} .-50\right)=9\left(t^{\circ} \mathrm{C} .-10\right)$				British.	Continental.
			Million. lillion. Trillion	10^{6} 10^{12} 10^{18}	10^{6} 10^{9} 10^{12}

VOLUME OF A KILOGRAMME OF PURE WATER

At $4^{\circ} \mathrm{C}$. and 760 mm . Values recalculated by Benoît. (Trav. et Mêm. Bur. Intl., 14, 1910.) (See p. 4.)

- Observer.	c.cs.	Observer.	c.cs.
Lefévre-Geneau and Fabbroni, 1799	1000 030	Chaney, 1893	$1000^{\circ} 150$
Schuckburgh and Kater, 1798 and 1821	$999{ }^{\circ} 5^{25}$	Guillaume, 1904.	1000*029
Svanberg and Berzélius, 1825 . . .	$999^{\circ} 710$	Chappuis, r907	1000.027
Stampfer, 183\%	1000.250	de Lépinay, Renoit, and Buisson,	

DENSITIES OF GASES

Supplementary to p. 26. Densities in grams per litre at 0° C., 760 mm ., sea-level, and lat. 45°.

Gas.	gms./litre	Observer.	Gas.	gms./litre.	Observer.
He .	1782	Watson, 7.C.S., 1910	Ra, Em.	9727	Gray \& Ramsay, P.R.S.
Ne .	-9002				1910 \& Pemot CR
Kr Xe .	3.708 $5 \cdot 851$	Moore \quad ", 1908	CH_{4}	7168	Baume \& Perrot, C.R., 1909

C. R., Compt. Rend.; 7.C.S., Journ. Chem. Sec. ; P.R.S., Proc. Roy. Sor.

PRESSURE COEFFICIENTS OF PV

Pressure coefficient, m, of $p v$ for gases at 1 atmosphere and constant temperature ; p is the pressure in atmospheres, and v is the volume. $m=\frac{\delta(p r)}{p \pi} \cdot \frac{1}{\delta p}$; m is a measure of the deviation of the gas from Boyle's law.

Air, $n=-00191$, Regnault.
$\left.\begin{array}{l}\mathbf{N}, \quad m=-000559 \\ \mathbf{H}, \quad m=+000772\end{array}\right\}$ Chappuis, Rayleigh, Leduc, and Sacerdote.

VALUES OF GRAVITY ("g") LONGITUDE AND LATITUDE

Helmert's formula connecting "gravity" with latitude and height is $g=980.617-2.593 \cos 2 \lambda-.0003086 \mathrm{H}$, where λ is the latitude, H is the height in metres above sea-level, and 980.617 cms . $/ \mathrm{sec} .^{2}$ is the value of g attributed to lat. 45° and sea-level. The values of g calculated by this formula are for most places in fair agreement with the observed values. Some discrepancy is found in the vicinity of large mountain ranges, such as the Himalayas.

No absolute standard determination of g has been made in England for many years, but comparisons have been made with Potsdam and Sèvres. For relative measurements, the relation $d y=0226 d \mathrm{~N}$ is useful, where N is the number of vibrations which a pendulum makes in a mean solar day of 86,400 mean time seconds. The length (l) of the "seconds" pendulum (i.e. 2 secs. period) $=g / \pi^{2}$ $=\cdot 101321 \mathrm{Ig} . l$ varies from $99^{\circ} 09.4 \mathrm{cms}$. at the equator to $99^{\circ} 620 \mathrm{cms}$. at the pole.

See Helmert's "Höhere Geodäsie," "Die Grösse der Erde," 1906, and "Die Schwerkraft im Hochgebirge," Clarke's "Geodesy," 1880, Sir Geo. Darwin's "Tides and Kindred Phenomena," Fisher's "Physics of the Earth's Crust," and for recent aspects of the subject, the reports to the triennial International Geodetic Conferences (...1906, 1909...), and the reports of the U.S. Geodetic Survey. (See also p. 13.)

Place.	Longitude E. or W. of Greenwich.	Latitude (λ).	Height (H) above Sealevel.	$\begin{gathered} \text { "g" } \\ \text { (calculated). } \end{gathered}$
Pole. Equator	- -	$\begin{array}{ccc}0 & 1 \\ 90 & 0 & 0 \\ 0 & 0 & 0\end{array}$	metres.	$\begin{aligned} & \mathrm{cms} . / \mathrm{sec} .^{2} \\ & 983^{\circ} 210^{*} \\ & 97^{8.024} \end{aligned}$
British Isles- Aberdeen (Univ.) +	2638 W	57.858 N	21	981.68
Aberystwith . .	$4 \quad 4 \mathrm{~W}$	52.25 N		981.28*
Bangor. .	48 W	5313 N	-	981.35**
Belfast	5.56 W	$5437 \quad \mathrm{~N}$	-	981.47*
Birmingham	154 W	5228 N	-	981.28*
Bristol	235 W	5128 N		981.20*
Cambridge (Univ Obs.)	- 541 E	52.1252 N	28	981.25
Cardiff .	310 W	5128 N	-	981'20*
Dublin (Trin. Coll.) .	$\begin{array}{llll}6 & 15 & \text { W }\end{array}$	$53=035 \mathrm{~N}$	$7 \dagger$	$981 \cdot 36$
" (R.C.S) $\dot{\square}$	64032 W	532313 N	15	481.36
Dundee (Univ. Coll.) \ddagger	25845 W	562726 N	$27 \dagger$	981.62
Durham	13456 W	$5446 \quad 6 \mathrm{~N}$		981.48 *
Edinburgh .	3113 W	555528 N	134	981.54
Eskdalemuir (Obs.)	31218 W	551848 N	244	981.45
Glasgow (Univ.) \ddagger	41712 W	555231 N	46	$981 \cdot 56$
Greenwich (Obs.)	000	512838 N	47	$981 \cdot 184$
Kew (Obs.) .	- 1846 W	51286 N	5	981.200
Leeds (Univ.) \ddagger	I 3315 W	534830 N	81	98138
Liverpool (Univ.) \ddagger. .	25737 W	532419 N	51	$981 \cdot 35$
London (Natl. Phys. Lab.) §	- 20 II W	512520 N	5	$981 \cdot 195$
- " (Univ., S. Kens.) .	- 10 23 W	5 I 2954 N	14	$98 \mathrm{I} \cdot 19$
" (Univ. Coll.) \ddagger.	- 757 W	513127 N	28	98I•19
Manchester (Univ.) ${ }_{+}{ }^{\text {. }}$	2142 W	$532753 \mathrm{~N}^{\text {c }}$	39	$981 \cdot 37$
Newcastle (Armstrong Coll.)	I 3653 W	54.5850 N	55	981.48
Nottingham (Univ. Coll.) \ddagger.	1845 W	5257 10-N	581	$981 \cdot 31$
Oxford (Radcliffe Obs.).	11539 W	514534 N	65	981.20
Plymouth	49 W	5022 N	5	981.10*
Portsmouth	I 612 W	50483 N	5	981.14
St. Andrews (Univ.)	248 W	5620 N	-	981.62*
Sheffield (Univ. Obs.).	- 550 E	$5323 \quad 2 \mathrm{~N}$	-	$981 \cdot 36 \text { * }$
Stonyhurst (Obs.) .	228 10 W	535040 N	114	$981 \cdot 37$
Africa- Bloemfontein	2640 E	290 S	-	979*24*
* No correction has been appl \ddagger Physics laboratory.	for height ab § Tèdd	ve sea-level. gton.	$\begin{aligned} & \dagger \text { Gro } \\ & \text { if } \mathrm{Seco} \end{aligned}$	nd floor. ad floor.

Place.	Longitude E. or W. of Greenwich.	Latitude (λ).	Height (H) above Sealevel.	(calculated).
Africa (contd.) -		- '1.11	metres.	cms./sec. ${ }^{\text {a }}$
Cairo (Observatory)	311714 E	30438 N	33	$979 \cdot 32$
Cape Town	1829 E	3356	12	979.64
Durban .	3040 E	$2940 \quad$ S		979 ${ }^{\text {2 }}$ * ${ }^{\text {* }}$
Johannesburg (Univ. Coll.).	$28 \quad 7$ E	$2611 \quad 5$	1753	978.49
Mauritius (Roy. Alf. Obs.)	5733 9E	$20 \quad 5 \quad 39 \mathrm{~S}$	55	978.63
Baltimore (Meteorol. Stn.)	7637 W	3918 : N	23	$980 \cdot 10$
Boston (Meteorol. Stn.) .	$\begin{array}{llllll}71 & 4 & \text { W }\end{array}$	$4221 \sim \mathrm{~N}$	38	980:37
Chicago (Meteorol. Stn.)	8738 W W	4152 N	251	$980 \cdot 26$
Harvard, Camb. (Obs.)	71	422248 N	24	98037
Jamaica (Montego Bay Obs.)	775222 W	1824.51 N	69	978.53
Montreal (McGill Ob ..)	733439 W	453017 N	57	$980 \cdot 6$
New York (Ruthfd. Obs.)	735998 W	4043.49 N	96	$980 \cdot 20$
Philadelphia (Obs.)	$75 \quad 937 \mathrm{~W}$	39578 N	36	980.15
Princeton (N.J.) .	743922 W	40.2058 N	65	9SO. 20
Quebec (Obs.)	$\begin{array}{llll}71 & 13 & 8 \mathrm{~W}\end{array}$	464821 N	70	980\%76
St. Louis (Obs.).	90.1217 W	383884 N	171	$979 * 99$
Toronto (Obs.) . ${ }^{\text {W }}$.	792340 W	433936 N	107	$980 \cdot 46$
Washington (Bur. of Stand \%)	77.359 W	385632 N	102	-980.097
Yale, New Haven (Obs.)	72558 W	411922 N	32	980.28
Asia- ${ }^{\text {Bombay (Obs.) }}$				
Calcutta (Surv.) Oifice)	78 88 21	18 53 45 22 32 5	6	
Hong Kong (Obs.).	114.1028 E	221813 N	33	$978 \cdot 76$
Madras (Obs.)	801454 E	$13 \quad 4.8 \mathrm{~N}$	7	$978 \cdot 29$
Australasia-				
Adelaide (Obs.) .	138358 E	345539 S	430	979.68
Brisbane (Obs.)	153 I 36 E	2728	42	979.12
Melbourne (Obs.)	1445832 E	374953 S	28	979.97
Perth.	11552 F	3157 S	14	979.47
Sydney (Obs.)	1511223 E	3351415	44	979.63
Wellington (Obs.), N.Z.	1744637 E	4118 I S	43	980'27
Europe -				
Berlin (Reichsanstalt) \dagger	1319 E	$5231 \quad \mathrm{~N}$	30	$981 \cdot 287$
Christiania (Obs.)	104323 E	595444 N	25	981.90
Copenhagen (O is.)	123140 E	554113 N	14	$981 \cdot 56$
Geneva (Obs.)	6911 E	461159 N	374	980.61
Leyden (Obs.)	4293 E	52920 N	6	$981 \cdot 26$
Paris (Obs.) (Bureai Intl.) \ddagger	22014 F	485011 N	59	$980 \cdot 95$
" (Bureaut Intl.) \ddagger	21310 E	484953 N	70	$980 \cdot 951$
Potsdam (Astron. Inst.)	$13 \quad 359 \mathrm{E}$	52.2256 N	94	$981 \cdot 249$
Rome (Coll. Obs.)	122853 E	4 l 5354 N	59	$980 \cdot 32$
St. Petersburg (Acad. Obs.).	301822 E	595630 N	3	98 r 91
Vienna (Impl. Obs.)	162021 E	481247 N		980.91 *
Zurich (Poly. Obs.).	8334 E	472240 N	468	$980 \cdot 69$

* No correction applied for height above sea-level.
\dagger Charlottenburg.
\ddagger Sèvres.
DISTANCES ON THE EARTH'S SURFACE
(See Ball's "Spherical Astronomy," 1909.)

At Lat.	Miles per	degree of	At Lat.	Miles per degree of		At Lat.	Miles per degree of	
	Longitude.	Latitude.		Longitude.	Latitude.		Longitude.	Latitude.
0	$69 \cdot 15$	$68 \cdot 69$	40	53.05	$69^{\circ} 00$	60	$34 \cdot 66$	69.21
10	$68 \cdot 11$	$68 \cdot 70$	45	48.99	$69^{\circ} 05$	70	$32 \cdot 73$	$69^{\circ} 32$
20	$65^{\circ} \mathrm{OI}$	$68 \cdot 77$	50	44.54	$69 \cdot 10$	80	12.05	69.38
30.	$59^{\circ} 94$	$68 \cdot 88$	55	39.75	$69 \cdot 16$	90	0	69.39

SIZE AND SHAPE OF THE EARTH

The spheroid of revolution which most nearly approximates to the earth, has the following dimensions :-
[r kilom. $=6214$ mile.]

Observer.	Equatorial radius, a.	Polar radias, 6.	Ellipticity, $(a-b) / a$.
Bessel, $18+1$.	6,377,397 metres	6,356,079 metres	
Clarke, 1866.	8,206 " -		$\begin{aligned} & 1 / 295^{\circ} \\ & 1 / 293^{\circ} \end{aligned}$
Helmert, 1880 $180{ }^{\text {* }}$.	8.249	515 818	$1 / 293.5$ $1 / 298.3$
U.S. Survey, $1906 \dagger$	8,388 " \ddagger	909 "\#	1/2970

* "Die Grosse der Erde."
+ "The Figure of the Earth," 1909, and Supplement, 1910; U.S. Coast and Geodetic Survey.
$\ddagger 3963^{\circ} 339$ miles. $\quad \| 3949^{\circ} 992$ miles.

MEAN DENSITY OF THE EARTH

(See Poynting's "Mean Density of the Earth," 1893.)

Observer.	Density.
Common Balance Method.	
Poynting, 1878	5493
Richarz and Krigar-Menzel, 1898	$5 \cdot 505$
Torsion Balance Method.	
Cavendish, 1798.	$5 \cdot 45$
Boys, Phil. Trans., 1895	$5 \cdot 527$
Braun, 1896	5.527
Eötvos, 1896	$5 \cdot 534$
Mean density of surface.	$2 \cdot 65$

$\begin{aligned} & \text { Mean polar quad- } \\ & \text { rant }\end{aligned}=10,002,100$ metres*
Volume of earth $=1.083 \times 10^{21}$ metres $^{3 *}$
Mass of earth $=5.98 \times 10^{27}$ grams \dagger

$$
=5^{\circ} 87 \times 10^{21} \text { tons }
$$

Area of land $\quad=1.45 \times 10^{18} \mathrm{~cm} .^{2}$
Area of ocean $=3.67 \times 10^{18} \mathrm{~cm} .^{8}$
$\left.\begin{array}{c}\text { Mean depth of } \\ \text { ocean (Murray) }\end{array}\right\}=3.85 \times 10^{6} \mathrm{~cm}$.
Volume of ocean $=1.41 \times 10^{24} \mathrm{~cm} .^{3}$
Mass of ocean $=1.45 \times 10^{24} \mathrm{grms}$.

[^2]sun
The mean equatorial

$\left.\begin{array}{l}\text { solar parallax (Hinks, } \\ \text { 1909) }\end{array}\right\}=8^{\prime \prime} \cdot 807$
$\left.\begin{array}{l}\text { Whence mean distance } \\ \text { from earth to sun }\end{array}\right\}=\left\{\begin{array}{c}1.494 \times 10^{11} \\ \text { metres } \\ 9.282 \times 10^{7} \\ \text { miles }\end{array}\right.$
Mean time taken by
light to travel from $=498^{\circ} 2$ secs. sun to earth

MOON
Mean distance from $\}=\left\{60^{\circ} 27 \times\right.$ earth's earth to moon $\}=\{$ radius
Mass of the moon $\}=\{(1 / 81 \cdot 53) x$ (Hinks, 1909) $\}=\{$ earth's mass Inclination of moon's orbit to ecliptic $\}=5^{\circ} 8^{\prime} 43^{\prime \prime}$

Constant of Gravitation (G in law of attraction) $=6.658 \times 10^{-8}$ c.g.s.

Obliquity of the Ecliptic to the equator $=23^{\circ} 27^{\prime} 4^{\prime \prime} \circ 4$ in 1909, subject to a small fluctuation by nutation, and a slow continuous decline of $46^{\prime \prime \prime} 84$ per century.

Constant of aberration of a star is theoretically equal to (Earth's orbital velocity)/(velocity of light) $=20^{\prime \prime \prime} 43 \pm " \circ 03$ (Renan and Ebert, 1905).

Constant of precession, i.e. annual precessional increase of the longitude of a star $=50^{\prime \prime} \cdot 2564+{ }^{\prime \prime} \cdot 0002225 t$, where t is the interval in years from 1900 (Newcomb).

ELEMENTS OF THE SOLAR SYSTEM

$8^{\prime \prime} \cdot 806$ is taken as the equatorial horizont 11 solar parallax from the observations of the as eroid Eros in 1900-1 ; 5.527 is adopted as the Earth's mean density (Boys, 1895 ; Braun, 1896). The constants for Mercury are those adopted by Stroobant and Backland (1909). The value of the mass of Jupiter is that obtained by Cookson (1908). The time of rotation of Venus is that suggest•d by Hansky and Stefánik (1907). (See Newcomb's "Spherical Astronomy"and Bill's "Spherical Astronomy.")

Name.	Equatorial Semi-diameter.			$\begin{gathered} \text { Mass } \\ \text { Earth }=1 \end{gathered}$	Mean Dunsity.		Gravity at Surf. Earth $=1$	No. of Satellites. \ddagger
	Angular.*	Miles.	Earth $=1$		Earth = 1	Water = 1		
Sun	$\begin{array}{cc}16 & 11 \\ 16\end{array}$	432,890	109:2	329,390	25	I•39	$27^{\circ} 61$	
Mercury	3.08	1387	350	- 34	-88	$4 \cdot 86$	28	0
Venus	8.40	3783	955	>818	>94	$>5^{\circ} 20$	>91	0
Earth	$8 \cdot 80$	$3963{ }^{\circ} 3$	1000	1.000	100 ,	$5 \cdot 527$	1.00	1 (D)
Mars.	4.68	2108	532	-106	$0 \% 1$	3.90	38	2 (D)
Jupiter	1 $37 \cdot 36$	43850	11.06	31450	- 25	$1 \cdot 36$	2.57	$8(7 \mathrm{D} ; 1 \mathrm{R})$
Saturn	I 24775	38170	9.63	94.07	12	$\cdot 63$	1.01	10'9 D; 1 R)
Uranus	34.28	15440	3.90	14.40	$\cdot 24$	$1 \cdot 34$	95	4 (R)
Neptune	$36 \cdot 56$	16470	$4 \cdot 15$	16.72	:23	$1 \cdot 28$	97	1 (R)

Name.	Inclination of Equator to Orbit.	Time of Axial Rotation.	Semi-major Axis of Orbit.			Sidereal Period.	
			Ear	$\mathbf{h}=\mathbf{I}$.	Millions of Miles.	Mean Solar Days.	Julian Years.
Sun	0 15${ }^{\prime \prime}$	$\begin{array}{ccc}\text { d } & \mathrm{h} & \mathrm{m} \\ 25 & 9 & 7 \\ \mathrm{~h} & \mathrm{~m} & \mathrm{~s}\end{array}$			-		
Mercury		h ?	3870986	$4=(0+4)$	$36 \cdot 0$	87.9693	24
Venus .	?	2340 (?)	7233315	$-7=(3+4)$	$67 \cdot 2$	2247008	62
Earth	23.278	$23 \quad 56$ 4.09	1 10000000	$10=(6+4)$	$92^{\circ} 9$	$365 \cdot 2564$	1.00
Mars .	$24 \quad 52$	$24 \quad 37 \quad 22.74$	1.523688	$16=(12+4)$	141.6	686.9797	1.88
Asteroids			2.55 to $2 \cdot 85$	$28=(24+4)$	237 to 265		
Jupiter		$956 \pm$	$5 \cdot 202803$	$52=(48+4)$	483.3	4332.588	11.86
Saturn	2649	$1015 \pm$	9.538844	$100=(96+4)$	886.2	10759	29.46
Uranus .		13?	19•19098	$196=(192+4)$	1782.8	30586:29	8374
Neptune	27?	?	30.07067	-	$2793{ }^{\circ} 5$	$60187 \cdot 65$	16478

Name.	Ellipticity of Planet.§	Mean Daily Motion in Orbit.	Longitude of Perihelion.	Longitude of Ascending Noie.	Inclination of Orbit to Ecliptic.	Eccentricity of Orbit.*
		4532.4	$75 \quad 5359$			
Mercury Venus		$\begin{array}{llll}4 & 5 & 32.4 \\ 1 & 36 & 7.7\end{array}$	$\begin{array}{r}75 \\ 75059 \\ 130 \\ \hline\end{array}$	$\begin{array}{llr}47 & 8 & 45 \\ 75 & 46\end{array}$	$\begin{array}{lll}7 & 0 & 10 \\ 3 & 23 & 37\end{array}$	
Earth	1/298	36 59 82	130 101 101 13 13 1 15	$\begin{array}{rl}75 & 46 \\ 0 & 47 \\ 0 & 0\end{array}$	$\begin{array}{rrr}3 & 23 & 37 \\ 0 & 0 & 0\end{array}$	
Mars .	1/270?	3126.5	334137	$4847 \quad 9$	151	0933
Jupiter	1/17	459.1	123620	992642	11842	048254
Saturn	1/9	20.5	90 4832	1124712	$2 \begin{aligned} & 2 \\ & 29 \\ & 0 \\ & 1\end{aligned}$	-056061
Uranus .	$1 / 95$	42.2	$169 \quad 256$	732925	- 4622	. 047044
Neptune		21.5	434520	1304044	14645	008533

[^3]
EQUATION OF TIME

$(+)$ means that the equation of time has to be added to the apparent solar time (i.e. sundial time) to give the mean solar or clock time (see p. 3). (M) = maximum or minimum. The values below vary by a few seconds from year to ycar. $C=D+E$, where $C=$ clock time, $D=$ dial time, and $E=$ equation of time.

Date.	Equation of time.	Date.	Equation of time.	Date.	Equation of time.	Date.	Equation of time.
Jan. 1	$\begin{array}{r}\text { m. } \\ +3 . \\ \hline\end{array}$	April 1	m. +4	July 1	m. s, +332	Oct. 16	m. -1420
, 16	+933	, 16	0	," 26	+618(M)	Nov. 3	-16 21 (M)
Feb. I	+1337	May 1	-257	Aug. 16	$+411$		-1510
, 12	+1425(M)	2) 14	-3 49 (M)	Sept. 1	00	Dec. 1	-1056
Mar. 1	+1234 +851	June 1	-2 27	" 16	- 56	" 12	-615
,, 16	$+851$	" 15	00	Oct. I	-1016	" 25	00 ,

PARALLAXES OF STARS

The proper motion of a star is its real change of place arising from the actual motion of the star itself.

The annual parallax is the angle between the direction in which a star appears as seen from the earth and the direction in which it would appear if it could be observed from the centre of the sun.

A light-year is the distance that light travels in one year (see p. 69).

Star and Magnitude.	Proper motion per year.	Annual parallax.	Distanee.	
			Sun's dist. $=1$	Light-years.
	" $\quad 1$.			
a Centauri (2)	$3 \cdot 7$	75 ± 01	28×10^{6}	4.4
21185 Lalande (7.5)	$7 \cdot 3$	$48 \pm .02$		6.8
6ı Cygni (4.8) .	$5 \cdot 2$	-37 ${ }^{\text {² }}$	-56"	$8 \cdot 8$
Sirius (-1.4) .	$1 \cdot 3$	-37士 01	-56."	8:8
Procyon (-5).	$1 \cdot 3$	-31	. 69 "	11
Altair (\%) .	$\cdot 7$	$\cdot 28 \pm 02$	74 "	12
Aldebaran (1:1)	-	$17 \pm .02$	1.4	22
Capella (2) .	4	$\cdot 12 \pm .02$	17 "	27
Vega (1). . .	4	-12 2.02		27
1830 Groombridge (6.4).	$7{ }^{\circ}$	$\cdots 10 \pm .02$		33
Polaris ($2 \cdot 1$).	00	-07 士 02		47
Arcturus ($\cdot z$)	23	. 024	$8 \cdot 7$	140

SYSTEMATIC MOTIONS OF THE STARS

The apparent proper motions of the stars show drifts in two directions. The assigned positions of the apices of these directions are:-

Computer,	Stream I.		Stream II.	
	R.A.	Dec.	R.A.	Dec.
Kapteyn, 1904.	85°	-11°	260°	-48°
Eddington .	90°	-19°	292°	-58°
Dyson . .	94°	-7°	240°	-74°

STANDARD TIMES Referred to Greenwich time.
Gt. Britain, France,Por-) Greenwich tugal, Belgium, Spain $)$ time Ireland Austria, Denmark, Germany, Italy, Norway, Switzerland. British South Africa, $\frac{1}{2}$ or 2 hours Egypt, Turkey. . .) Japan fast 9 hours fast Australia\{ $\begin{aligned} & 8,9, \text { or } 10 \\ & \text { hours fast }\end{aligned}$ New Zealand. Und
Canada and United States hours fast
$11 \frac{1}{2}, "$,
$5,6,7$, or 8 hours slow

SCREWS

It is customary for British metal screws; of $\frac{1}{1}$-inch diameter and above, to have a Whitworth thread, for smaller sizes a British Association thread. In the Whitworth thread the angle between the slopes is 55°, in the B.A. thread $47^{\circ} 5^{\circ}$.

The pitch is the distance between adjoining crests (say) of the same thread measured parallel to the axis of the screw. It is the reciprocal of the number of turns per inch or mm . as the case may be. The full diameter is the maximum over-all diameter.

Mricrometer screws are made with some multiple or sub-multiple of 100 threads to the inch or mm .
"Woodscrew3" of iron or brass are numbered as follows: No. o has a diameter of os inch, each succeeding number adding o14 inch to the diameter of the screw : this applies to all lengths. The length of countersunk screws is measured over all ; that of round-headed screws, from under the head.
[I inch $=25.4 \mathrm{~mm}$.]

STANDARD WHITWORTH.				BRITISH ASSOCIATION.																				
Full diameter	Threads to inch	Fall diameter.	Threads to inch.	No.	Fall diameter.	Pitch.	No.	Full diameter.	Pitch.	No.	Fall diameter	Pitch.												
	$\begin{array}{r} 5 \\ 5 \\ -6 \\ 6 \\ 7 \\ 7 \\ 7 \\ 8 \\ 9 \\ 10 \\ \hline \end{array}$		10	0 1 2 3 4 4 5 6 7 7	mm ${ }^{\text {m }}$	${ }_{1} \mathrm{~mm}$.	9	${ }_{1} \mathrm{~mm} .9$	mm.	18	${ }_{6} \mathrm{~mm}$.													
			11		$5 \cdot 3$	10	10	1.7	- 35	19	. 54	14												
			11		47	81	11	1.5	31	20	48	2												
			12		$4{ }^{1}$	73	12	$1 \cdot 3$	28	21	42	11												
			12		3.6	66	13	12	25	22	37	$\cdot 10$												
			14		3.2	59	14	$1 \cdot 0$	23	23	33	\bigcirc												
			16		2.8 2.5		15		21	24	-29	-08												
			18		$2 \cdot 5$	48	16	79	$\cdot 19$	25	'25	$\bigcirc 7$												
			20		2.2	43	17	70	17															
$\mathrm{M}=$ mass of body. \quad (See				MOMENTS OF INERTIA																				
				A. M. Worthington, "Dynamics of Rotation."																				
Body.				Axis of rotation.						Moment of inertia														
Uniform thin rod (length l)				$\left\{\begin{array}{l}\text { (I) Through centre, perpendicular to } \\ \text { length } \\ \text { (2) Through end, perpendicular to }\end{array}\right.$						$\frac{M \frac{l^{2}}{12}}{M \frac{l^{2}}{3}}$														
Rectangular lamina(sides a and b)				(1) Through centre of gravity, perpendicular to plane																				
				(2)	pendicular to plane Through centre of				gravity,															
Circular lamina (radius r)										(I) Through centre, perpendicular to plane						M^{r}								
				(2) Any diameter						$M^{r^{2}}$														
										${ }^{M} \frac{7}{4}$														
Solid cylinder (radius r; length l)																								
						dicu		is of	ylinder															
Hollow cylinder (external and internal radii R and r; length l)					Axis of cylind					$\mathrm{M} \cdot \frac{\mathrm{R}^{2}+r^{2}}{2}$														
				2) Through centre of gravity, perpendicular to axis					$\mathrm{M}\left(\frac{r^{2}}{12}+\frac{\mathrm{R}^{2}+r^{2}}{4}\right)$															
Solid sphere (radius r)				Through centre					$\mathrm{M} \cdot \frac{2 r^{2}}{5}$															
Hollow sphere (external and internal radii R and r).				Through centre						$\mathrm{M}\left(\frac{2}{5} \cdot \frac{\mathrm{R}^{5}-r^{5}}{\mathrm{R}^{3}-r^{3}}\right)$														
Anchor ring (mean radius of ring R ; radius of crosssection r)								$\left\{\begin{array}{l} \text { (1) Through centre, perpendicular } \\ \text { to plane of ring } \\ \text { (2) Any diameter } \end{array}\right.$						$\begin{aligned} & M\left(R^{2}+\frac{3 r^{2}}{4}\right) \\ & M\left(\frac{R^{2}}{2}+\frac{5 r^{2}}{8}\right) \end{aligned}$										

VOLUME CALIBRATION OF VESSELS BY WATER OR MERCURY

Volume content of vessel at $t^{\circ} \mathrm{C} .=\mathrm{V}_{t}=\mathrm{W}_{t} v_{t} \equiv \tau v_{t}(f)$, where-
$v_{t}=$ observed weight in grams (against brass weights in air) of contained water (or mercury) at $t^{\circ} \mathrm{C}$.
$\mathrm{W}_{t}=$ weight of such liquid in vacun (i.e. corrected for buoyancy in air).
$v_{t}=$ volume of I gram of liquid at $t^{\circ} \mathrm{C}$.
(f) is a factor which introduces the buoyancy and specific volume corrections.
The following table of values of the factor (f) is based on tables on pp .19 and 22.

Temp. (t) of weighing	$10^{\circ} \mathrm{C}$	11°	12°	13°	14°	15°	16°	17°
Value of $\left\{\mathbf{H}_{2} \mathbf{O}\right.$. factor (f) $\mathbf{H g}$.	$\left\|\begin{array}{l} 1.00133 \\ \cdot 073683 \end{array}\right\|$	$\begin{aligned} & 1 \cdot 00143 \\ & 3 \cdot 073697 \\ & \text { I } \end{aligned}$	$1.0015+$ 073710	$\left\lvert\, \begin{aligned} & 1 \cdot 00166 \\ & \because 073724 \end{aligned}\right.$	$\begin{array}{r} \text { r.00179 } \\ \cdot 073737 \end{array}$	$\begin{aligned} & 1.00193 \\ & 0 \\ & 073750 \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{r} \cdot 00209 \\ & \cdot 073764 \end{aligned}\right.$	$\begin{aligned} & 1 \cdot 00226 \\ & \cdot 073777 \end{aligned}$
Temp. (t) of weighing	18°	19°	20°	21°	22°	23°	24°	25°
Value of $\left\{\mathrm{H}_{2} \mathrm{O}\right.$ factor (f) $\boldsymbol{H} \mathbf{H g}$	$\left\|\begin{array}{c} 1 \cdot 00244 \\ 0.073790 \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 1 \cdot 00263 \\ & \cdot 073804 \end{aligned}\right.$	$\left\|\begin{array}{l} 1 \cdot 00283 \\ \cdot 073817 \end{array}\right\|$	$\begin{gathered} \mathrm{r} \cdot 00305 \\ \cdot 073831 \end{gathered}$	$\begin{gathered} \mathrm{r} \cdot 00327 \\ \cdot 073844 \end{gathered}$	$\left\lvert\, \begin{aligned} & 1 \cdot 00350 \\ & \cdot 073857 \end{aligned}\right.$	$\begin{aligned} & 1 \cdot 00375 \\ & \cdot 073871 \end{aligned}$	$\begin{aligned} & 1.00400 \\ & \cdot 073884 \end{aligned}$

The above gives the volume content V_{t} of the vessel at the temperature of weighing, $t^{\circ} \mathrm{C}$. At any other temperature, t^{\prime}, the volume $\mathrm{V}_{t^{\prime}}=\mathrm{V}_{t}\left\{\mathrm{I}+\gamma\left(t^{\prime}-t\right)\right\} \equiv \mathrm{V}_{t}(\mathrm{~F})$, where γ is the coefficient of cubical expansion of the material of the vessel. Values of the factor (F) for glass vessels ($\gamma={ }^{\circ} 000025$) are tabulated below.

$\left(t^{\prime}-t\right)$	$2^{\circ} \mathrm{C}$	$4{ }^{\circ}$	6°	8°	$-2^{\circ} \mathrm{c}$	-4	-6°	-8°
Value of factor	005	$1 \cdot 00010$	1.00015	1.00020	'99995	-99990	'99985	-99980

Example.-Weight of water contained in a vessel at $10^{\circ} \mathrm{C}=10$ gramis: thence volume of vessel at $10^{\circ} \mathrm{C} .=10 \times 1.00133$ c.cs. The same vessel, if of glass, would contain at $16^{\circ} \mathrm{C}$., $10 \times 1^{.001} 33 \times 1^{\circ} 00015=10.014^{8} \mathrm{c} . \mathrm{cs}$.

CAPILLARITY CORRECTIONS OF MERCURY COLUMNS

The height of the meniscus and the value of the capillary depression depend on the bore of the tubing, on the cleanliness of the mercury, and on the state of the walls of the tube. The correction is negligible for tubes with diameters greater than about 25 mms . The table below gives the amount of the correction (which has to be added to the height) for various diameters of glass tubing and meniscus heights. (Mendelćeff and Gutkowsky, 1877. See also Scheel and Heuse, Ann. d. Phys., 33, 1910.)

Bore	Height of meniscus in mms.								$\begin{aligned} & \text { Bore } \\ & \text { of } \\ & \text { tube. } \end{aligned}$	Height of meniscus in mms.					
tube.	4	6	8	1.0	12	1.4	$1 \cdot 6$	$1 \cdot 8$		8	1.0	1.2	14	1.6	1.8
min.	${ }^{\text {nim. }}$	${ }_{1} \mathrm{~mm} .22$	mm.	${ }_{\text {mm. }}$	mm.	mm.	mm.	mm.	mm.	mm.	${ }_{\text {mm. }}$.	mm.	mm.	mm.	${ }_{\text {mm. }}$.
5	47	+ 6	r ${ }^{\text {. }} 86$	1	1.45	1.80	-	三	10	$\xrightarrow{-15}$. 28	- 23	. 20	. 46	- 52
6	$\cdot 27$	41	$\cdot 56$	$\cdot 78$	\bigcirc	$1 \cdot 21$	143		11	-10	$\cdot 14$	- 18	21	- 24	- 27
7	-18	28	40	$\cdot 53$. 67	-82	-97	$1 \cdot 13$	12	-07	-10	- 13	-15	-18	-19
8	-	20	29	38	46	. 56	$\cdot 65$	$\bigcirc 7$	13	-04	-07	-10	$\cdot 12$	-13	$\cdot 14$

REDUCTION OF BAROMETER READINGS TO $0^{\circ} \mathrm{C}$.

Corrected height $H_{0}=H\left\{1-\frac{(\beta-a) t}{(1+B t)}\right\}$, where H and t are the observed height and temperature of the barometer, $\beta=0001818$ (Regnault), the coefficient of cubical expansion of mercury; $\alpha=0000085$, the coefficient of linear expansion of glass, or 0000184 for brass. Hydrogen temperature scale. (After Broch, Inter. Bur. Weights and Measures.)
(In standard English barometry the mercury is reduced to $32^{\circ} \mathrm{F}$., and the scale to $62^{\circ} \mathrm{F}$. In the table below, both are reduced to the ice point.)

Temp. (t).	Correction in mms. to be subtracted.									
	GLASS SCALE.					BRASS SCALE.				
	Uncorrectel height in mms.					Uncorrected height in mms.				
	700	720	740	760	780	700	720	740	760	780
$2^{\circ} \mathrm{C}$.	$\stackrel{\mathrm{mm}}{.} \mathrm{P}$	$\cdot 25$	$\cdot 26$	$\cdot 26$	$\cdot 27$	${ }^{\mathrm{mmm}} \cdot 2$	- 24	- 24	-25	-25
4	$4{ }^{4}$	-49	$\cdot 51$	- 53	- 54	- 46	$\cdot 47$	$\cdot 48$	- 50	-51
6	73	$\cdot 75$	77	$\cdot 79$	-81	- 69	$\cdot 71$	72	$\cdot 74$	$\cdot 76$
8	'97	-99	$1 \cdot 02$	$1 \cdot 05$	$1 \cdot 08$	-91	-94	-97	-99	$1 \cdot 02$
10	$1 \cdot 21$	$1 \cdot 25$	$1 \cdot 28$	131	$1 \cdot 35$	114	1•17	1.21	$1 \cdot 24$	$1 \cdot 27$
12	1.45	1.49	153	1.58	1.62	$1 \cdot 37$	141	1.45	1.49	1.53
14	$1 \cdot 69$	$1 \cdot 74$	1'79	I• 84	$1 \cdot 89$	160	1.64	1.69	$1 \cdot 73$	1.78
16	1.94	$1 \cdot 99$	$2 \cdot 05$	$2 \cdot 10$	$2 \cdot 16$	1.82	1.88	193	1.98	2.03
18	2.15	$2 \cdot 24$	$2 \cdot 30$	$2 \cdot 36$	2.43	2.05	$2 \cdot 11$	$2 \cdot 17$	$2 \cdot 23$	$2 \cdot 29$
20	2.42	2.49	$2 \cdot 56$	$2 \cdot 62$	$2 \cdot 69$	$2 \cdot 28$	$2 \cdot 34$	2.41	2.47	2.54
22	2.66	$2 \cdot 73$	$2 \cdot 81$	$2 \cdot 89$	2.96	2.51	2.58	2.65	$2 \cdot 72$	$2 \cdot 79$
24	2.90	2.98	3.06	$3 \cdot 15$	$3 \cdot 23$	2.73	2.81	2.89	2.97	3.05
26	3.14 3.38	3.23	3.32	3.41	3.50	2.96	3.04	3.13	3.21	$3 \cdot 30$
28	$3 \cdot 38$	3.47	3.57	3.67	$3 \cdot 77$	3•19	3.28	$3 \cdot 37$	$3 \cdot 46$	3.55
30	$3 \cdot 62$	$3 \cdot 72$	$3 \cdot 83$	3.93	$4^{\circ} \mathrm{O} 3$	3.41	3.51	$3 \cdot 61$	3.71	$3 \cdot 80$
32	$3 \cdot 86$	3.97	4.08	4'19	4.30			385	3.95	4'05
34	4.10	$4^{\circ} 21$	433	445	4.57	$3 \cdot 87$	3.98	$4^{\circ} 09$	4.20	4.31

REDUCTION OF BAROMETER READINGS TO LAT, 45° AND SEA-LEVEL

It is a convention to take " g " at lat. 45° and sea-level as the standard value for "gravity." The corrections below resalt from the variation of " g " with latitude and height above sea-level (see p. II). The barometer correction for latitude $=\frac{H_{0}}{760}(C)$, has to be subtracted from the temperature-corrected barometer reading H_{0} for latitudes between 0° and 45°; and added for latitudes from 45° to 90°.

Latitude	0° 90	85^{5}	10° 80	${ }^{15} 5^{\circ}$	$70^{\circ}{ }^{\circ}$	25°	30° 60	35° 55°	40° 50	45°
c	${ }_{1} \mathrm{mm}$.	194	1.85	170	1.51	$1 \cdot 27$	${ }^{9} 9$	$\cdot 67$	'34*	. 00

The correction of the barometer due to diminution of gravity with increasing height above sea-level amounts to about 24 mm . of mercury per 1000 metres above sea-level. The correction has to be subtracted from the observed reading.

WEIGHINGS: GAS VOLUMES

REDUCTION OF WEIGHINGS TO VACUO

The buoyancy correction $=\mathrm{M} \sigma(\mathrm{I} / \Delta-\mathrm{I} / \mathrm{p})=\mathrm{M} k$, where M is the apparent mass in grams of the body in air, σ is the density of air $(=.0012)$ in grams per c.c., Δ is the density of the body, ρ is the density of the weights. The correction is true to 4% for the following limits: 740 mm . press., 1° to $22^{\circ} ; 760 \mathrm{~mm}$., 8° to $29^{\circ} ; 780 \mathrm{~mm}$., 15° to 35°. If the correction is required more accurately, multiply the value of k given below by $\sigma^{\prime} / 0012$, where σ^{\prime} is the true dencity of the air for the temp. and press. at the time of the weighing (for σ^{\prime}, see p. 25). The corrections for quartz weights are the same as for Al. + means cor ${ }^{\mathrm{n}}$. to be added to observed weight.

Density of Body Δ.	Correction Factor (k) in Milligms.			Density of Body weighed Δ.	Correction Factor (k) in Milligms.		
	Brass wgts. $\rho=8 \cdot 4$	$\begin{aligned} & \text { Pt wgts. } \\ & p=21.5 . \end{aligned}$	$\begin{aligned} & \text { Al wgis. } \\ & \rho=265 . \end{aligned}$		Brass wgts. $p=8 \cdot 4$	$\begin{aligned} & \text { Pt wgts. } \\ & \rho=21 \cdot 5 . \end{aligned}$	$\begin{gathered} \Delta l \mathrm{wgts} . \\ \rho=2 \cdot 65 . \end{gathered}$
$\cdot 5$	+2.26	+2.34	+195	1.6	+ 61	+ 69	+ 30
. 55	+2.04 +1.86	+2.13	+1.73	$1 \cdot 7$	+ 56	+ 65	+ 25
6	+1.86	+194	+155	1.8	+ 52	+62	+ 21 +18
$\bigcirc 6$	+1.70	+179 +1.65	+139	$1 \cdot 9$	+ 49	+ 58	+ 18 +.15
$\cdot 7$	+1.57	+1.66	+1.26		+ 46	+ 54	+ 15
.75	+1.46 +1.36	1.55 +1.44	+1.15 +105	${ }_{3}{ }^{5}$	+ 34 $+\quad 26$ +	+43 $+\quad 34$	+03 +.05
-85	+136 +1.27	+144 +136	+ 105 $+\quad .96$	$3 \cdot 5$	+26 $+\quad 20$	$+\quad 34$ $+\quad 29$	- 05 -11
-9	+1. +1.19 +1	+ +128 +128	+ $+\quad .88$	4	+ +16	$+\quad 38$ $+\quad 24$	- 15
. 95	+1.12	+1.21	+ 81		+10	+ 19 $+\quad 19$	- 21
1	+ 1.06	+1.14	+ 75	6	+ ${ }^{\circ} 6$	+ 14	- 25
$1 \cdot 1$		+1.04	+ 64	8	+ 01	+-09	- 30
1.2	+ 86	+ 94 +.87	+ 55	10	- 02	+.05	- 33
1.3 1.4	$+\quad 78$ $+\quad 71$	(a $+\quad 47$ $+\quad 40$	15 20	- 06 $-\quad 08$	+.03 +.004	- 37 $-\quad 39$
1.4 1.5	$+\quad 78$ $+\quad 76$ $+\quad 66$	+ 80 $+\quad 75$	+ $+\quad 40$ $+\quad 35$	20 22	- 08 -09	+004 +001	-39 $-\quad 40$

REDUCTION OF GASEOUS VOLUMES TO 0° AND 760 MMS. PRESSURE

Corrected volume $v_{0}=\{v /(1+00367 t)\} \cdot p / 760$, where v, t, and p are the observed volume, temp., and pressure (in mms. of mercury) of the gas respectively. $g=980^{\circ} 62 \mathrm{cms}$. per sec${ }^{2}$. The coefficient ${ }^{\circ} 00367$ observed by Regnault.

Values of $(1+.00367 t)$.

Temp. (t).	0	1	2	3.	4	5	6	7	8	9
$0^{\circ} \mathrm{C}$.	1.0000	$1 \cdot 0037$	$1 \cdot 0073$	1.0110	1-0147	1.0183	1.0220	I'0257	1.0294	1.0330
10	0367	0404	0440	0477	0514	0550	0587	0624	0661	0697
20	0734	0771	0807	0844	0881	0917	0954	0991	1028	1064
30	1101	1138	1174	1211	1248	1284	1321	1358	1395	1431
40	1468	1505	1541	1578	1615	1651	1688	1725	1762	1798
50	1835	1872	1908	1945	1982	2018	2055	2092	2129	2165
60	2202	2239	2275	2312	2349	2385	2422	2459	2496	2532
70	2569	2606	2642	2679	2716	2752	2789	2826	2863	2899
80	2936	2973	3009	3046	3083	3119	3156	3193	3230	3266
90	3303	3340	3376	3413	3450	3486	3523	3560	3597	3633
100	3670	3707	3743	3780	3817	3853	3890	3927	3964	4000
110	4037	4074	4110	4147	4184	4220	4257	4294	4331	4367
Values of $p / 760$										
Press. (p).	0	1	2	3	4	5	6	7	8	9
700 mm .	-9211	-9224	9227	'9250	-9263	9276	9289	9303	-9316	9329
710	-9342	-9355	-9368	-9382	-9395	-9408	-9421	. 9434	-9447	-9461
720	$\cdot 9474$	$\cdot 9487$	$\cdot 9500$	-9513	- 9526	-9539	-9553	. 9566	$\cdot 9579$	$\cdot 9592$
730	-9605	-9618	-9632	-9645	- 9658	. 9671	. 9684	-9697	-9711	$\cdot 9724$
740	. 9737	-9750	$\cdot 9763$	9776	- 9789	-9803	$\cdot 9816$	- 9829	9842	-9855
750	-9868	. 9882	-9895	-0908	-9921	-9934	9947	-9961	-9974	-9987
760	10000	1.0013	$1 \cdot 0026$	1.0039	1-0053	1.0066	1.0079	$1 \cdot 0092$	I'0105	1-0118
770	$1 \cdot 013{ }^{2}$	1.0145	I 0158	$1 \cdot 0171$	r 0184	10197	1.021 I	I•0224	I-0237	1.0250

DENSITIES OF THE ELEMENTS

Average densities of liquid and solid elements in grams per c.c. at ordinary temperature unless otherwise stated. For gaseous densities see p. 26. The density of a specimen ma depend considerably on its state and previous treatment, e.g. the density of a cast metal
increased by drawing, rolling, or hammering.

Element.	Density.	Element.	Density.	Element.	Density
Aluminium	2'70	Indium	71	Samarium	
Antimony	$6 \cdot 62$	Iodine	4.95	Scandium	
Argon (liq). Arsenic	1.4/-185 ${ }^{\circ}$	Iridium.	22.41 7.86	Selenium, amorph.	$4 \cdot 8$
Arsenic Barium	5773 3.75	Iron (pure) ${ }_{\text {Krypton (liq.) }}$.	$7 \cdot 86$ 2.16	" cryst.	$4 \cdot 5$
Beryllium	1.93	Lanthanum.	2112 6.12	Silicon	4.27
Bismuth .	9.80	Lead.	11.37	Silicon Silver	2.3
Boron.	2.5 (?)	Lithium .	- 534	Silver Sodium	5
Bromine.	$3^{3} 102 / 25^{\circ}$	Magnesium.	174	Sodium Strontium	
Cadmium	8.64	Manganese .	739		2.07
Crsium .	1.87	Mercury (see p. 22)	$13.56 / 15^{\circ}$	Sulphur, rhombic " monoclinic	2.07 1.96
Calcium .	1.55/29 ${ }^{\circ}$	Molybdenum .	10\%	" amorphous	1.96
Carbon-		Neodymium	$6 \cdot 96$	liquid 113°	1.92 1.81
Diamond. Graphite.	3.52	Neon (liq.) .	(?)	Tantalum . .	16.6
Cerium	${ }_{6}{ }^{2}{ }^{2}$	Nickel	8.9	Tellurium	$6 \cdot 25$
Chlorine (liq.)	2.49/0	Nitrogen (liq.)	12.75	Terbium.	(?)
Chromium. .	6.50	Osmium .	79/-19	Thallium	11.9
Cobalt	8.6	Oxygen (liq.)	${ }^{1} 2.27 /-235^{\circ}$	Thorium.	113
Copper	8.93	Palladium.	11.4	Titaniu	7.29
Erbium	4.77 (?)	Phosphorus, red	112 2.20	Tungsten	3.54
Fluorine (liq.)	1-11/-1870	" yellow	1.83	Uranium	18.8
Gadolinium.		Platinum .	21.50	Vanadium	187 5
Gallium .	5.95	Potassium . .	-862	Xenon (liq	5.5
Germanium.	$5 \cdot 47$	Praseodymium	6.48	Xenon (liq	
Gold.	$9 \cdot 32$	Radium . . .	(?)	Yttrium.	$3 \cdot 8(?)$
Helium (liq.)	-12/B.P.	Rhodium	12.44	Zinc :	
Hydrogen (liq.)	O7/B.P.	Rubidium	1532	Zirconium .	$4 \cdot 15$
"	-086/M.P.	Ruthenium	12.3		

The densities of the alkali metals $\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Cs}$ are due to Richards and Brink, 1907 ; of He a $-26 \mathrm{~S}^{\circ} \cdot 6$, Onnes, 1908 ; of W, Gin, 1908; of Ta, Nb, and Th, won Bolton, 1905, 1907, 1908; of Ca Goodwin, 1904; of Rh and Ir, Holborn, Henning, and Austin, 1904; of Br, Andrews and Carlion, 1907

densities of common substances

Average densities in grams per c.c. at ordinary temperatures. For densities of acids, alkalies, and other solutions, see pp. 23 et seq.; of "chemical compounds," p. 109 ; of gases,
p. 26 ; of other minerals, p. 126.

Substance.	Density.	Substance.	Density.	Substance.	Dens
MTetals \& Alloys.		Coins (Engli		Woods (seasoned).	
Iron, cast ${ }^{\text {d }}$				Ash ; mahogany	
", wrought.	$7 \cdot 8-7 \cdot 9$	Constantan (Eu-	8.88	Bamboo	$\begin{aligned} & 6-88 \\ & c \cdot 4 \end{aligned}$
Stcel		$\underset{\text { German silver }{ }^{\text {r }} \text { - }}{ }$	8.5-8.9	Beach ; oak ; teak	$7-9$
Brass (ordy.)**	8.4-8.7	Gunmetal .	$8.0-8.4$	Box	$9-1.1$
Brass weights.	c. 8.4	Magnalium ***	$\text { c. } 2$	Cedar Ebony	
Bronze (Cu, Sn)	8.7-89	Manganin $\dagger \dagger$		Ebony Lignum vite	$1 \cdot 1-1 \cdot 3$
Coins (English)	87-39	Phosphor bronze $\ddagger \ddagger$	$8 \cdot 7-8.9$	Lignum vitæ Pitchpine ; walnut	$1 \cdot 2-13$
" bronzet.	8.96	Platinoid §§. ${ }^{\text {a }}$	$\text { c. } 9$	Pitchpine ; walnut Red pine (deal)	$\begin{array}{r} 6-7 \\ 5-7 \end{array}$
" gold \ddagger	1772	I't (90), Ir (10).	21.62	Red pine (deal)	

DENSITIES OF COMMON SUBSTANCES (contd.)

Subs	Density.		Density.	Substanc	Densit
Minerals, etc.		Glycerine		Gelatine . Glass, flint	$\begin{array}{r} 1 \cdot 27 \\ 9-45 \end{array}$
Agate ; slate	2.5-2.	Glycerine		" crown ;	$9-4$
Asbestos		Methylate Milk	c. 1.03	windo	
Carbon (see above)		Naphtha.	85	Ice" (Roth, 190S), 0°	eep.
Charcoal.	3-6	Oil, castor	97	" (Vincent,'o2), 0°	9160
Coal	$1.2-1.5$ $1.4-1.8$		$91-93$ $.90-92$	Indiarubber (rure)	91-93 $1 \cdot 8-1.9$
Coke	1.4-1.8	", lubricating	90-92	Ivory Leather .	1.8-1.9
Gas carbon	$1 \cdot 9$	", paraffin.	c. 88	Paper .	-7-1.1
Emery	40	Petrol.	63-7	Pitch	c. $1 \cdot 1$
Granite	2.5-3	Sea-water		Porcelain	$2-2$
Marble	2;-2	Turpentinc	-87	Resin	c. $1 \cdot 1$
Masonry .	c. 2	Vinegar		Red fibre.	1.45
Pumice (natural)		Iniscellaneo		Snow (loose)	c. ${ }^{12}$
Quartz		Amber	$1 \cdot 1$	Tar. ${ }^{\text {W }}$	
Silica, fused transpar		Bone	8-2	Wax, soft paraftin.	$87-88$
", translucent.	21	Bu	-92-94 1.9	b̈ees-	
Sand (silver)	2.63		-22-'26	" sealing . .	c. 1.8
Sandstone ; kaoli	$2 \cdot 2-2 \cdot 3$	Ebo		", soft red	c. $\mathrm{I}^{\circ} \mathrm{O}$

DENSITY DETERMINATION CORRECTIONS

In the determination of the density of a body by weighing in water, the true density (corrected for air buoyancy and water density) is given by $\Delta(D-\sigma)+\sigma$, where Δ is the uncorrected density of the body, D is the density of the water, and σ is the density of the air. The table below gives the correction to be applied to Δ. D is taken as " 9992 (correct to 1 part in 2000 between 10° and $18^{\circ} \mathrm{C}$., see p. 22) and σ as 0012 (sce p. 25). - means that the correction has to be subtracted from Δ. (See Stewart and Gee, "Practical Physics," vol. i.)

Δ	Corr.										
0.5	+.0002	4.0	-.0068	$7 \cdot 5$	-.0138	$8 \cdot 4$	-.or 56	9.5	--0178	16.0	-.0308
1.0	-.0008	4.5	-.0078	78	-. 0144	$8 \cdot 5$	-. 0158	$10 \cdot 0$	-0188	170	-0328
1.5	-.0018	5.0	-.0088	$7 \cdot 9$	--0146	$8 \cdot 6$	-. 0160	11.0	-0208	180	-0348
20	-.0028	$5 \cdot 5$	-.0098	$8 \cdot 0$	--0148	$8 \cdot 7$	-.0162	12.0	-0228	$19 \cdot 0$	- 0368
$2 \cdot 5$	-.0038	6.0	-.0108	$8 \cdot 1$	-.0150	8.8	-. 0164	$13 \cdot 0$	-0248	20.0	-0388
3.0	-.0048	6.5	-0118	8.2	-.0152	$8 \cdot 9$	-. 0166	140	-0268	21.0	-.0408
3.5	-.0058	$7 \cdot 0$	-.0128	$8 \cdot 3$	-.0154	$9 \cdot 0$	-.0168	150	-.0288	$22 \cdot 0$	--0428

DENSITY OF DAMP AIR

The density of damp air may be derived from the expression $\sigma=\sigma_{d}(\mathrm{H}-0.378 p) / \mathrm{H}$, where σ_{d} is the density of dry air at a pressure H mms. (see p. 25), H is the barometric height, and p is the pressure of water-vapour in the air.

HYDROMETERS

Common: Density $=$ degrecs/ 1000 .
Baumé : Density at $15^{\circ}=144.3 /(144.3$ - Baumé degrees $)$.
Twaddell : Density $=1+$ (Twaddell degrees/2co).
Sikes : One degree $=$ a density interval of 002 on the average .

DENSITY OF WATER

In grams per millilitre.* Pure air-free water under 1 atmos. Temps. on const.-vol. H.scale. Water has a maximum density at $3^{\circ} .98$ (Chappuis, 1897 ; Thiesen, Scheel and Diesselhorst; De Coppet, 1903). The temp. (t_{m}) of maximum density at different pressures (p), measured in atmos., is given by $t_{m}=3^{\circ} 98-0225(p-1)$.

The specific volume is the reciprocal of the density. For reciprocals, see p.iz6. (See Chappuis, Trav. et Mém. Bur. Intl, 13, 1907.)

For density of ice see p. 21 ; of steam, p. $26 . \quad$ [* 1 litre $=1000^{\circ} 027$ c.cs.]
Density of water at $-10^{\circ}=99815$; at $-5^{\circ}=99930$.

Temp.	0	2	4	6	8	10	12	14	16	18
$0^{\circ} \mathrm{C}$.	-99987	-99997	$1 \cdot 00000$	-99997	-99988	-99973	-99953	'99927	'99897	'99862
20	-99323	99780	. 99732	-99681	- 99626	. 99567	. 99505	. 99440	-9937	. 9930
40	-9922	. 9915	. 9907	-9898	. 9890	-9581	- 9872	-9862	- 9853	-9843
60	-9832	-9822	-9 911	.9801	-9789	9778	-9767	-9755	-9743	-9731
80	-9718	9705	-9693	-9680	-9667	-9653	. 9640	. 9626	-9612	$\cdot 9598$
100	-9584		-		-	951	-			

Density at $150^{\circ}=917$; at $200^{\circ}=\cdot 863$; at $250^{\circ}=79$; at $300^{\circ}=\cdot 70$.

DENSITY OF MERCURY

In grams per c.c. Hydrogen scale of temp. For reciprocals, see p. 136. (See Chappuis, Trav. et Mém. Bur. Intl., 13, 1907.)

Temp.	0	2	4	6	8	10	12	14	16	18
$-20^{\circ} \mathrm{C}$.	${ }^{13} .6450$	13	${ }^{13} 6.6351$	13 6301	13.6251	${ }^{13} \cdot 6202$	$\left\|\begin{array}{ll} 13 & \\ & 6152 \end{array}\right\|$	13 . 6103	${ }^{13} \begin{array}{ll} & \\ & 6053 \end{array}$	13 6004
0	5955	5905	5856	5806	-5757	- 5708	-5659	-5609	-5560	5511
20	-5462	. 5413	- 5364	-5315	5266	5217	-5168	-5119	-5070	$\cdot 5022$
40	4973	-4924	-4875	-4826	-4778	4729	4680	-4632	458	4534
60	-4486	-4437	-4389	-4340	4292	-4243	-4195	-4146	4098	4050
80	-4001	- 3953	$\cdot 3904$	-3856	3808	- 3759	3711	$\cdot 3663$	3615	3566
	0	20	40	60	80	100	120	140	160	180
100	13.3518	13.304	13:2:7	13.209	13.152	13.115	13.063	13.021	12.974	12.927
1300	12.881	12.834	12.787	12.740						

DENSITY OF ETHYL ALCOHOL, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$. Aq

In grams per c.c. $\%$ indicates grams of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ in 100 grams of aquenus solution. Hydrngen scale of temp. (Calculated by E. W. Morley from Mendeléeff's Observations, Four. Am. Chem. Soc., Oct. 1924.)

At $17^{\circ} \mathrm{C}$.

\%	0	1	2	3	4	5	6	7	8	9
0	. 9988	-9969	. 9951	'9933	'9916	-9899	-9984	-9869	-9S54	-9840
10	- 9826	-9813	-9 Soo	-9,87	. 9775	9762	-9750	- 9737	-9725	9713
20	-9700	-9687	-9674	-9661	-9647	$\cdot 9633$	-9619	-9604	-9589	-9573
30	. 9557	-9540	-9524	. 9506	$\cdot 9489$	-9470	. 9452	-9433	-9414	- 9394
40	$\bigcirc 9375$	-9354	-9334	$\cdot 9313$	$\cdot 9292$	$\cdot 9271$	-9250	-922S	-9207	. 9185
50	9163	-9140	-9118	-9096	-9073	9051	. 9028	-9005	-8982	- 8959
60	. 8936	. 8913	-8890	- 9867	-8843	. 8820	-8797	-8773	. 8749	- 8726
70	- 8702	-8678	-8655	- 8631	-8607	-8582	-8558	-8534	-8510	. 8485
80	-8461	- 8736	. 8411	. 8386	. 8361	. 8336	-8310	-8285	. 8259	-8232
90	- 8206	- 179	- S152	. 8124	- Soy 6	- Coss	-8039	- Solo	-790	-7950
100	$\cdot 7919$	-								

For other temperatures, interpolate from the above and the following :-

At $22^{\circ} \mathrm{C}$.

$0 \%,{ }^{\prime} 9978 ; 10 \%,{ }^{\prime} 9813 ; 20 \%,{ }^{\circ} 678 ; 30 \%, \cdot 9526 ; 40 \%,{ }^{\circ} 9338 ; 50 \%, 9122 ; 60 \%, \cdot 8895$; $70 \%,-8660 ; 80 \%,-8417 ; 90 \%, \cdot 8162 ; 100 \%, 7876$.

DENSITY OF HYDROCHLORIC ACID, HCI.Aq

Grams per c.c. at $15^{\circ} \mathrm{C}$. (Lunge and Marchlewski, 1891.)

Dens.	Grams HCl in		Dans. Change for ± 1	Dens.	Grams HCl in		Dens. Change for ± 1	Dens.	Grams HCl in		Dens. Change for $\pm 1^{\circ}$
	100 gm .	1 litie			100 g	litre			100 g	litre	
	of Solv	on.			of Sol	ion.			of S	ion.	
1.01	2.14	22	-00016	1.08	16.15	174	-00035	$1 \cdot 15$	29.6	340	-00052
1.02	4.13	42	. 00019	1.09	$18 \cdot 1$	107	-0003 ${ }^{\text {S }}$	$1 \cdot 16$	31.5	366	-00054
1.03	$6 \cdot 15$	64	. 00021	$1 \cdot 10$	20°	$2 \therefore 0$	-00040	$1 \cdot 17$	$33^{\circ} 5$	392	. 00056
1.04	8.16	85	- $\mathbf{C 0 0 2 4}$	1111	21.9	$2+3$.00043	$1 \cdot 18$	$35^{\circ} 4$	418	-00058
1.05	10.17	107	-00027	$1 \cdot 12$	$23 \cdot 8$	267	'00045	$1 \cdot 19$	$37^{\circ} 2$	443	-00059
1.06	12.19	129	-00030	$1 \cdot 13$	$25^{\prime} 7$	291	-00048	$1 \cdot 20$	$39^{\circ} 1$	469	-00060
1.07	14.17	152	. 00032	$1 \cdot 14$	$27 \cdot 7$	315	-00050				

DENSITY OF NITRIC ACID, HNO_{3}. Aq
Grams per c.c. at $15^{\circ} \mathrm{C} . \% \mathrm{~N}_{2} \mathrm{O}_{5}=857 \times \% \mathrm{HNO}_{3}-$ by weight. (Lunge and Rey, 1891.)

Dens.	Grams HNO_{3} in		rens. Chango for $\pm{ }^{1}$	Dens.			Dens. Change for $\pm 1^{\circ}$	Dens.	$\frac{\text { Grams }^{10 \mathrm{HN}_{3} \text { in }}}{100 \mathrm{gm} .1 \text { litre }}$		Dets. Change for $\pm 1^{\circ}$
	100 gm .	1 litre			100 gm .	1 litre					
	of Solution.				of Solution.				of Solution.		
1.02	70	3	. 00022	$1 \cdot 22$	$35^{\circ} 3$	4.30	-000So	1.42	$69 \cdot 8$	991	.00137
1.04	7. 26	75	-00028	$1 \cdot 24$	$38 \cdot 3$	475	-00086	$1 \cdot 44$	74.7	1075	-00143
1.06	$10 \cdot 7$	113	. 00034	$1 \cdot 26$	41.3	521	-00091	1.46	80°	1168	-00149
1.08	13.9	151	- 60040	$1 \cdot 28$	44.4	568	-00097	1.48	86.0	1274	.00154
$1 \cdot 10$	$17^{\circ} \mathrm{I}$	188	-00045	$1 \cdot 30$	$47 \cdot 5$	617	$\cdot \mathrm{OOIO}$	1.50	$94^{\circ} \mathrm{I}$	1411	-00160
$1 \cdot 12$	20.2	227	. 00051	$1 \cdot 32$	$50^{\circ} 7$	669	-00109	1.504	96°	1444	,00161
1.14	23.3	266	-00057	$1 \cdot 34$	$54^{\prime} 1$	725	- 0 O1I4	1.508	97.5	1470	$\cdot 00162$
$1 \cdot 16$	26.4	306	-00062	$1 \cdot 36$	$57 \cdot 6$	783	- Col20	$1 \cdot 512$	98.5	1490	-00163
$1 \cdot 18$	$29^{\circ} 4$	347	-00068	$1 \cdot 38$	$6 \mathrm{E} \cdot 3$	846	.00126	1.516	$99^{\circ} 2$	1504	- 00164
1.20	32.4	388	$\cdot 00074$	$1 \cdot 40$	$65^{\circ} 3$	914	.00132	$1 \cdot 520$	$99^{\circ} 7$	1515	.00166

DENSITY OF SULPHURIC ACID, $\mathrm{H}_{2} \mathrm{SO}_{4}$. Aq
Grams perc.c. at $15^{\circ} \mathrm{C} . \% \mathrm{SO}_{3}=8.816 \times \% \mathrm{H}_{2} \mathrm{SO}_{4}$-by weight. (Lunge an I Isler, 1895.)

Density.	Grams $\mathrm{H}_{2} \mathrm{SO}_{4}$ in		Density.	Grams $\mathrm{H}_{2} \mathrm{SO}_{4}$ in		Density.	G:ams $\mathrm{H}_{2} \mathrm{SO}_{4}$ in	
	100 gm .	1 litre		100 gm .	1 litre		100 gm .	1 litre
	of Solution.			of Solution.			of Solution.	
1.02	3.03	31	1.44	54.1	779	1.822	90.4	
1.04	5.96	62	$1 \cdot 46$	$56^{\circ} \mathrm{O}$	S17	$1 \cdot 824$	$90 \cdot 8$	1656
1.06	$8 \cdot 77$	93	$1 \cdot 48$	57.8	856	1.826	91.2	1666
1.08	1160	125	1.50	59.7	896	1.828	$91 \cdot 7$	1676
$1 \cdot 10$	14.35	158	1.52	61.6	936	1.830	$92 \cdot 1$	1685
$1 \cdot 12$	17.01	191	1.54	63.4	-977.	1.832	92.5	1695
$1 \cdot 14$	19.61	223	$1 \cdot 56$	$65^{\circ} \mathrm{I}$	$1015{ }^{\text {- }}$	1.834	$93^{\circ} \mathrm{O}$	1706
$1 \cdot 16$	$22 \cdot 19$	257	1.58	$66 \cdot 7$	$105+$	1.836	$93 \cdot 8$	1722
$1 \cdot 18$	24.76	292	$1 \cdot 60$	$68 \cdot 5$	1096	1.838	$94 \cdot 6$	1739
1.20	27.3 29.8	323	$1 \cdot 62$	70.3	1139	$1 \cdot 840$	$95 \cdot 6$	1759
$1 \cdot 22$	29.8	364	$1 \cdot 64$	72.0	1181			
1.24	32.3	400	$1 \cdot 66$	73.6	1222	$1 \cdot 8405$	95'9	1765
$1 \cdot 26$	34.6	435	$1 \cdot 68$	75.4	1267	1.8410	97°	1786
1.28	36.9 $39^{\circ} \mathrm{C}$	472 510	1.70 1.72	77.2	1312	$1 \cdot 8415$	97.7	1799
$1 \cdot 30$	$39^{\circ} 2$	510	$1 \cdot 72$	$78 \cdot 9$	1357	$1 \cdot 8410$	$98 \cdot 2$	1808
$1 \cdot 32$	$41 \cdot 5$	548	$1 \cdot 74$	$8{ }^{8} 7$	1404	$1 \cdot 8405$	98.7	1816
$1 \cdot 34$	$43^{\circ} 7$	586	1.76	82.4	1451	1.8400	-99.2	1825
1.36 1.38	$45^{\circ} 9$	624	$1 \cdot 78$	84.5	1504	1.8395	$99^{\circ} 4$	1830
$1 \cdot 38$	48°	662	1.80	86.9	1564	1.8390	$99^{\circ} 7$	1834
1.40 142	$50 \cdot 1$ 52.1	702 740	1.81 1.82	$88^{\circ} 3$ 900	1598 1639	1.8385	$59^{\circ} 9$	1838

DENSITY OF AMMONIA, $\mathrm{NH}_{4} \mathrm{HO}$. Aq Grams per c.c. at $15^{\circ} \mathrm{C}$.											
Dens.	Grams NH_{3} in		Dens. Change for $\pm 1^{\circ}$	Dens.	Grams NH_{3} in		Dens. Change for $\pm 1^{\circ}$	Dens.	Grams NH_{3} in		Dens. Change for $\pm 1^{\circ}$
	100 gm	1 litre			100	litre			100	itre	
	of Sol	tion.			of Sol	tion.			of Sol	tion.	
-996	91	$9^{9} 1$	-00019	-956	11.03	$105 \% 4$	-00031	-916	23.03	$210 \cdot 9$	-00049
-992	1. 84	18.2	-00020	- 952	$12 \cdot 17$	115.9	-00033	$\cdot 912$	$2+33$	221.9	-00051
-988	$2 . \mathrm{So}$	27.7	-00021	-948	13.31	126.2	-00035	-908	25.65	232.9	-00053
-984	380 4.80	37.4 47	-00022	${ }^{9} 9444$	14.46 15.63	136.5 146.9	-00037	-904		243.9	. 000055
-976	$5 \cdot 80$	56.6	-00024	-936	16.82	157.9	-00041	-896	29.69	266.	-00059
-972	$6 \cdot 30$	661	.00025	-932	18.03	168.1	-00042	-892	31.05	$277^{\circ} \mathrm{O}$	-00060
-963	${ }_{7}^{7} 82$	75.7	-00026	-928	19.25	178.6	-00043	-888	$32 \cdot 50$	288.6	-00062
-964	884	$85^{\circ} 2$	-00027	-924	2049	189.3	-00045	-884	$34 \cdot 10$	3014	-00064
-960	9.91	95.1	-00029	$\cdot 920$	21.75	$200 \cdot 1$	-00047	80	35.70	314°	'00066

DENSITY OF SODIUM HYDROXIDE, NaHO. Aq

Grams per c.c. at $18^{\circ} \mathrm{C}$. The percentages indicate grams of NaOH in 100 grams of solution. (Bousfield and Lowry, 1905.)

\%	Density.								
0	-9986	10	$1 \cdot 1038$	20	$1 \cdot 2202$	30	$1 \cdot 3290$	40	1.4314
1	1.0100	11	1-1208	21	$1 \cdot 2312$	31	$1 \cdot 3396$	41	1.4411
2	$1 \cdot 0213$	12	1.1319	22	I. 2422	32	1.3502	42	14508
3	1.0324	13	11429	23	1.2532	33	$1 \cdot 3605$	43	1.4604
4	1.0+35	14.	$1 \cdot 1540$	24	1.2641	34	$1 \cdot 3708$	44	1 4699
5	1.0545	15	1.1650	25	1.2751	35	$1 \cdot 3811$	45	1.4794
6	1.0656	16	1.1761	26	$1 \cdot 2860$	36	1.3913	46	14890
7	1.0766	17	$1 \cdot 1871$	27	1.2958	37	1.4014	47	14985
8	1.0877	18	I'1982	28	1.3076	38	1.4115	48	1.5080
9	1-0987	19	$1 \cdot 2092$	29	$1 \cdot 3184$	39	I. 4215	49	1.5174

DENSITY OF SODIUM CARBONATE, $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{Aq}$
Grams per c.c. at $15^{\circ} \mathrm{C}$. (Lunge.)

Density.	Grams $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in		Density.	Grams $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in		Density.	Grams $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in	
	100 gm .	1 litre		100 gm .	1 litre		100 gm .	1 litre
	of Solution.			of Solution.			of Solution.	
1.00'7	67	$6 \cdot 8$	1.060	$5 \cdot 71$	$60 \cdot 5$	$1 \cdot 116$	10.95	
1.014	1.33	13.5	1.067	$6 \cdot 37$	68.0	$1 \cdot 125$	$1 \mathrm{I} \cdot 8 \mathrm{I}$	132.9
$1 \cdot 022$	$2 \cdot 09$	21.4	1.075	$7 \cdot 12$	$76 \cdot 5$	$1 \cdot 134$	12.61	$143{ }^{\circ}$
1.029	2.76	28.4	1.083	7.88	85.3	$1 \cdot 142$	13.16	$150 \cdot 3$
1.036	3.43	$35 \cdot 5$	$1 \cdot 091$	8.62	94°	$1 \cdot 152$	14.24	$164 \cdot 1$.
1.045 1.052	4.29 4.94	$44^{\circ} 8$ 52.0	1-100	9.43 10.19	103.7			
1.052	4.94	52°	$1 \cdot 108$	$10 \cdot 19$	112%			

Change of density per $1^{\circ} \mathrm{C}$. $\left(0^{\circ}\right.$ to $\left.30^{\circ}\right)$, o to $7 \%=0002$; in to $20 \%=0004$.
DENSITY OF CALCIUM CHLORIDE, CaCl_{2}. Aq
Grams per c.c. at $17^{\circ} 9^{\circ} \mathrm{C}$. The percentages indicate grams of anhydrous CaCl_{2} in 100 grams of solution. (Pickering, 1894.)

$\%$	Density.								
$\mathbf{1}$	$\mathbf{1 . 0 0 7}$	11	1.094	21	1.189	31	1.294	41	1406
3	1.024	13	1.112	23	1.209	33	1.316	43	1429
5	1.041	15	1.131	25	1.229	35	1.338		
7	1.058	17	1.150	27	1.250	37	1.361		
9	1.076	19	1.169	29	1.272	39	1.384		

25
 DENSITIES: SOLUTIONS, AIR

DENSITIES OF SOME AQUEOUS SOLUTIONS

Grams per c.c. at $18^{\circ} \mathrm{C}$. The indicated $\%$ is the number of grams of anhydrous substance in 100 grans of solution. (Kohlrausch, "Prakt. Phys.")

Subs	5\%	10\%	15\%	20\%	25\%	Sabstance	5%	10\%	15\%	20\%
NaCl	1.034	1.071	1'109	$1 \cdot 148$	1190	Mg		1-104	I 1 160	1.220
NaNO	1.033	I-068	1'105	1-144	1-185		1.044	I'093	1.147	1-204
NaA	1.025	1.051	1.078	$1 \cdot 105$	1.132		1.014	1.029	1.043	$1 \cdot 057$
$\mathrm{H}_{3} \mathrm{PO}$	1.027	I 054	1.083	1.114	$1 \cdot 145$	CuSO_{4}	I.051	1.107	$1 \cdot 167$	$1 \cdot 230$
ZnSO_{4}	1.051	1-107	$1 \cdot 167$	1.232	I 305	KCl	I.031	$1 \cdot 064$	1.098	${ }^{1} 1133$
FeCl_{3}	${ }_{1} 1130$	$1 \cdot 175$	1.226	1.278	1331	KNO	1.030	1.063	1.097	1-133
	1'044	I.093	1.146	$1 \cdot 202$	1.256		r ${ }^{1}$	$\mathrm{I}^{\circ} \mathrm{O} \mathrm{O}$		
MgCl_{2}	1 0042	$1 \cdot 08$	1-130	$1 \cdot 176$	$1 \cdot 225$		1.03	1.072	10	
Substa	5\%	10\%	15\%	20\%	25	30\%	35%	40\%	45\%	50\%
K	$1 \times$	1×073	4	I'15	I'204	1.254	I 307	1.365	1.429	
	- 036	1.076	120	$1 \cdot 168$	12	1.273	I.332	1.397.	1.468	1545
$\mathrm{K}_{2} \mathrm{CO}$	1.044	$1 \bigcirc 091$	${ }^{\text {I }}$ + 40	1'191	1244	$1 \cdot 299$	1.356	I 415	1.477	1.541
LiCl.	1027	I.056	1.085	1-115	1.147	1.181	1:217	1-255		
CdSO	1.049	-103	1.161	$1 \cdot 224$	1-295	1372	1-457			
AgNO_{3}.	1042	1-089	I. 140	1.196	$1 \cdot 255$	1.321	I 394	1.477	1570	1.674
PbA_{2}	1.036	1.075	1.118	$1 \cdot 163$	1212	1.265	1.322	$1 \cdot 386$		
Sugar*.	ro18	1.039	1.060	$1 \cdot 081$	I•104	1-128	1.152	I-177	$1 \cdot 203$. 23

* $60 \%, 1^{\circ} 287$; $[75 \%, 1 \cdot 38 \circ$ (supersaturated) $]$.

DENSITY OF DRY AIR AT DIFFERENT TEMPERATURES AND PRESSURES

Grams per c.c.; pressures in mm. of mercury at $0^{\circ} \mathrm{C}$. lat. $45^{\circ} ; g=980.62$ cms. per sec. ${ }^{2}$. These densities are calculated by the expression $\frac{.001293}{(\mathrm{I}+.00367 t)} \cdot \frac{\mathrm{H}}{760^{\prime}}$, where $\cdot 001293$ is due to Leduc, 1898, and Rayleigh, 1893 (p. 26) ; and 00367 to Regnault. For density of damp air, see p. 21.

Temp. (1).	Pressure in Millimetres (H).							
	710	720	730	740	750	760	770	780
$0^{\circ} \mathrm{C}$.	-001208	. 001225	. 001242	. 001259	-001276	. 012123	. 001310	-001327
2	-001199	. 001216	-001233	-001250	-001267	-001284	-001300	-001317
4	-001190	-001207	-00122	-001241	. 001258	-001274	-001291	-001308
8	-01182	-001199	-001215	-01232	-001248	.001265	-001282	-001298
8	-001173	-01190	-001207	-001223	-001240	-001256	-001273	-001289
10	. 001165	-001182	-001198	-001214	-001231	-001247	-001264	-001280
12	-001157	-01173	-01190	-001206	-001222	-001238	-001255	-001271
14	- 01149	-01165	-001181	-001197	-001214	- 01230	- 01246	-001262
16 18	-001141	-01157	-001173	- 001189	-01205	-001221	- 01237	-001253
18	-001133	- 011149	. 001165	-001181	-001197	-001213	-001229	-001245
20	-01125	-001141	-001157	-001173	. 001189	-001205	-00122	-001236
22	- 01118	-001133	-001149	-01165	-00181	- 011196	- $0^{0} 1212$	-001228
24	- 001110	-001126	-001141	-001157	. 01173	. 011188	- 01204	-001220
26	-01103	-001118	-01134	-001149	.001165	-01180	. 011196	-001211
28	-001095	- 001111	. 001126	-001142	. 001157	-001173	-001188	-001203
30	-001088	-001103	-001119	-001134	.001149	. 01165	-001180	-001195

DENSITIES OF GASES

Only those gases for which accurate density determinations have been made are included in this table (see also p. 10). Other gases will be found in the table below. For density of air under different temperatures and pressures, see p. 25.

Densities are in grams per litre ($1000027 \mathrm{c} . \mathrm{cs}$. see p. 10) at $0^{\circ} \mathrm{C}$. under 760 mm . of mercury at $0^{\circ} \mathrm{C}$. and lat. $45^{\circ}\left(g=980^{\circ} 62\right)$, i.e. under a pressure of 1.01323×10^{6} dynes per sq. cm .
(After P. A. Guye, Chem. News, 1908.)

Gas.	Density and Observer.	Accepted density.	Density rel. to 0
Air	I•2927 L. ; I'2928	$\begin{gathered} \text { Grams litre. } \\ 1: 2928 \end{gathered}$	0.90469
Oxygen, O_{2}	$\left\{\begin{array}{c} 14288 \text { L.; } 142905 \text { R. ; I } 42900 \mathrm{M.} ;\} \\ 1442896 \text { Gr. } ; 14292 \text { J.P. } \end{array}\right\}$	$1 \cdot 42900$	1.00000
Hydrogen, H_{2}	0008982 L. ; 008998 R. ; 0089873 M.s	0.08987	-06289
Nitrogen, N_{2}.		$1 \cdot 2507$	$0 \cdot 87523$
Argon, A	17809 R. ; 177808 Ra.	r 7809	$1 \cdot 2463$
Nitrous oxide, $\mathrm{N}_{2} \mathrm{O}$	$1 \cdot 9780 \mathrm{L}$. ; r9777 R. ; r9774 G.P.	1•9777	$1 \cdot 3840$
Nitric oxide, NO^{2}	I•3429 L. ; 13402 Gr. ; I•3402 G.D.	$1 \cdot 3402$	0.93786
Ammonia, NH_{3}.	0.7719 L.; 0.77085 P.D.; 007708 G.P.	$\bigcirc \cdot 7708$	
Carbon monoxide, CO	I'2501 L.; 12504 R.	1.2504	0.87502
Carbon dioxide, CO_{2}	1.9763 L. ; r9769 R. ; r.9768 G.P.	1.9768	$1 \cdot 3833$
$\xrightarrow{\text { Hydrochloric acid, }} \mathrm{HCl}$	r.6407 L. ; r.6397 Gr.; r.6398 G.G.	1.6398 2.0266	1.1475 2.0480
Sulphur dioxide, SO_{2}.	2.9266 L. ; 2.9266 J.P. ; 2.9266 B.	$2 \cdot 9266$	2.0480

B., Berthelot ; G.D, Guye \& Davila ; G.G., Guye \& Gazarian ; G.P., Guye \& Pintza; Gr., Gray ; J.P., Jacquerod \& Pintza; L., Leduc ; M., Morley ; P.D., Perman \& Davies; R., Rayleigh ; Ra., Ramsay.

The densities below are all experimental values, and are relative to that of oxygen $\left(\mathrm{O}_{2}=16\right)$ at 0° and 760 mms . at lat. 45° (see above).

Cas.	$\begin{gathered} \text { Rel. } \\ \text { dens. } \end{gathered}$	Gas.	$\left.\begin{array}{\|c\|} \hline \text { Rell. } \\ \text { dens. } \end{array} \right\rvert\,$	Cas.	Rel. dens.
	13.32		1.98	Nitrogen oxychloride,	
Arsine, AsH_{3}	$39^{\circ} \mathrm{O}$	Hydrob		NOCl	33.45
Boron fluoride, B Bromine, $\mathrm{Br}_{2} \mathrm{c} 22$	33.48	Hydrofluoric acid, HF	39.24 10 10	Nitrogen peroxide $\left(\mathrm{N}_{2} \mathrm{O}_{4}\right) \mathbf{2 6}^{\circ} \cdot \mathbf{7} \mathrm{C}$	
${ }_{\text {Butane, }} \mathrm{C}_{4} \mathrm{H}_{10}$.	29	Hydriodic acid, HI	1032 6336	" \quad, $39^{\circ} .8$	$38: 37$ 3562
Carbon oxychloride, COCl_{2}	50.75	Hydrogen selenide, $\mathrm{H}_{2} \mathrm{Se}$	$40 \cdot 47$	$\begin{array}{r}60^{\circ} 2 \\ \hline 80.6\end{array}$	30.12 36.06
", oxysulphide, COS	$30 \cdot 47$, sulphide, $\mathrm{H}_{2} \mathrm{~S}$	17.22	, $100^{\circ} 1$	24.33
Chlorine, Cl_{2} monoxide, $\mathrm{Cl}_{2} \mathrm{O}$	36.07 43	, telluride, $\mathrm{H}_{2} \mathrm{Te}$ Krypton, Kr	$65^{\circ} 00$ 41.5	", $\left(\mathrm{NO}_{2}\right)^{12154} 10.5$	23.46 22.88
" monoxide, $\mathrm{Cl}_{2} \mathrm{O}$ " dioxide, ClO_{2}.	43.54 3374	Krypton, Kr Methane, CH_{4} (1909)	41.5 8.03		$22 \cdot 88$ 22.73
Cyanogen, $\mathrm{C}_{2} \mathrm{~N}_{2}$.	26.16	Methylamine,		Phosphine, PH_{3}.	$22 \cdot 73$ 17.58
Ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$	15.57	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	15.64	Phosphorus chloro-	
Ethylamine, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$		Methyl chlo $\mathrm{CH}_{3} \mathrm{Cl}$		fluoride,, $\mathrm{PCl}_{2} \mathrm{~F}_{3}$, oxyfluoride, POF_{3}	7819
Ethyl chlorid		Methyl ether, $\mathrm{C}_{2} \mathrm{H}_{6} \dot{\mathrm{O}}$		", pentafluoride, $\mathrm{PF}_{5}{ }^{3}$	65.01
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}{ }^{\circ}$	32.13	, fluoride, $\mathrm{CH}_{3} \mathrm{~F}$	$17 \cdot 67$	" trifluoride, PF_{3}	4376
Ethyl fuoride, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~F}$	24.62	Methylene fluoride,		Propylene, $\mathrm{C}_{3} \mathrm{H}_{6}$ -	21.69
Ethylene, $\mathrm{C}_{2} \mathrm{H}_{4}$	14.27	$\mathrm{CH}_{2} \mathrm{~F}_{2}$	26.21	Silicon fluoride, SiF_{4}	52.13
Fluorine, F_{2}.	18.97	Neon, Ne (1910)	10.8	-Xenon, Xe	$65 \cdot 35$

DENSITY OF SATURATED WATER VAPOUR

Densities in grams per litre under different pressures.
(Zeuner, 1890.)

Atmos.	$\mathbf{0}$	0.5	1	1.5	2	2.5	3	3.5	4	4.5
$\mathbf{0}$	-	0.315	0.606	0.887	1.16	1.43	1.70	1.97	2.23	2.49
$\mathbf{5}$	2.75	3.01	3.26	3.52	3.77	4.02	4.27	4.52	4.77	5.02
$\mathbf{1 0}$	5.27	5.52	5.76	6.01	6.25	6.50	6.74	6.99	7.23	-

ELASTICITIES

Young's Modulus, or Longitudinal Elasticity, E in dynes per sq. cm.
Rigidity, Torsion Modulus, or Shear Modulus, u in dynes per sq. cm .
Volume Eiasticity, Cubic Elasticity, or Bulk Modulus, k in dynes per sq. cm.
Compressibility (cubic), $\mathrm{C}=\mathrm{I} / \mathrm{k}$.
Poisson's Ratio, $\sigma=$ lateral contraction per unit breadth/longitudinal extension per unit length. For a homogeneous isotropic substance-

$$
\begin{equation*}
n=\frac{\mathrm{E}}{2(1+\sigma)} \cdots(a) ; \quad \sigma=\frac{\mathrm{E}}{2 n}-1 \ldots(b) ; \quad k=\frac{\mathrm{E}}{3(\mathrm{I}-2 \sigma)} \tag{c}
\end{equation*}
$$

For an isotropic solid Poisson's Ratio must lie between $+\frac{1}{2}$ and -I , but for some materials it may, when deduced from E and n, exceed + r. (See Searle's "Elasticity.")

1 megabar $=10^{6}$ dynes per sq. $\mathrm{cm} .=987$ atmos $=1 / 1 \cdot 013$ atmos. $=$ the pressure measured by $750^{\circ} 15 \mathrm{mms}$. of mercury at $0^{\circ} \mathrm{C}$. sea-level, and latitude $45^{\circ}=749.66 \mathrm{mms}$, at 0° in London.

The elasticities of a substance depend considerably upon its history. The extent of the agreement between the calculated and observed values of n and of σ below gives an indication of the degree of isotropy of the metals used. (Grüneisen, Reichsanstalt, Ann. d. Phy., 1908.)

ELASTICITIES OF METALS

Metal at $18^{\circ} \mathbf{C}$. (see also below and pp. 28, 29).	$\begin{gathered} \text { Young's } \\ \text { Modulus, E. } \end{gathered}$	Rigidity, n.		Poisson's Ratio, σ.		Vol. Elast. k.	Compressy C. per megabar (calculated)	
	By static method or longl. vibns.	By oscilln. method.	Calcd. by formula (a).	Observed.	Caled. by formula (b).	Caled. by formula (c).		
Aluminium (W)*	7.05×10^{11}	2.67×10^{11}	2.63×10^{11}	339	310	7.46×10^{11}	$1 \cdot 33 \times 10^{-6}$	
Bismuth (C), pure.	3.19		$1 \cdot 20$	33		3.14	3.2	
Cadmium (C), pure	4.99		1.92	30		$4 \cdot 12$	$2 \cdot 4$	
Copper (W), pure .	12.3	4.55	$4 \cdot 55$	- 337	356	13.1	74	
Gold (W), pure	$8{ }^{\circ}$	2.77	$2 \cdot 80$	422	495	16.6	60	
Iron (W), $\cdot 1 \%$ C.	21.3		$8 \cdot 31$	-280		Lil	$\cdot 63$	
Steel (W), 1% C.	$20 \cdot 9$	8.12	$8 \cdot 12$	-287	-287	16.4	$\cdot 62$	
Lead (C), pure .	1.62		${ }^{562}$	-446	-	$5 \% 0$	$2 \cdot$	
Nickel (W) \dagger.	20.2		770	-309	-	17.6	$\cdot 57$	
Palladium (C), pure	113	5.11	4.04	-393	-101	17.6	- 57	
Platinum (C), pure	16.8	6.10	$6 \cdot 04$	-387	- 368	$24^{\circ} 7$	41	
Silver (W), pure .	790	2.87	$2 \cdot 86$	-379	-369		92	
Tin (C), pure .	5.43		2.04	$\bigcirc 33$		$5 \cdot 29$		
Bronze (C) \ddagger.	8.08		2.97	- 358	-177	9.52	1.05	
Constantan (W)§ .	16.3	$6 \cdot 1$	6.11 4.65	- 325	- 329	15.5	-65	
Manganin (W) \\|	12.4	4.65	$4 \cdot 6$	- 32	$\cdot 329$	12.1	83	

The(experimental) results below are mostly for ordinary laboratory materials, chiefly wires.

ELASTICITIES (contd.)										
Substance.	Young's Modulus, dynes $/ \mathrm{cm}$.	Temperature coefficient a in Elast $_{t}=$ Elast $_{15}\{1-a(t-15)\}$			Compressibility C. per megabar (i.e. 10^{8} dynes $/ \mathrm{cm} .{ }^{2}$) (Buchanan, Proc.R.Soc.,1901).					
		At $15^{\circ} \mathrm{C}$.	a for E.*	a for $n \dagger$	$7-11^{\circ} \mathrm{C}$.; 200-300 megabars (see also pp. 27, 29).					
Iridium $\\|$ Rhodium Tantalum Invar 9o Pt, Io Sir Sil fibre Spider thread Catgut Ice $\left(-2^{\circ}\right)$ Quart (crystal) Marble Oak Deal. Dahogany Teak.	$\begin{array}{\|cc\|} 5.2 \times 10^{11}(\mathrm{G} .) \\ 3.2 & \text { (.). } \\ 38: 6 & \text { (Bo.) } \\ 14.1 & \\ 21.0 & \\ 65 \ddagger & \end{array}$	AluminiumCopper.GoldIronSteelStealPlatinumSiverTin .	$\begin{aligned} & 21 \cdot 3 \times 10^{-4} \\ & 3.64 \\ & 4.8 \\ & 2.3 \\ & 2.4 \\ & .98 \\ & 7.5 \\ & \hline 3.7 \\ & \text { ver } \\ & \text { ronze } \end{aligned}$	$13 \cdot 5 \times 10^{-4}$4.03.3$7 \cdot 3$$2 \cdot 6$10.4.55.94.66.56.3$-1 \cdot 2$		1.7×10^{-6} .88 .80 2.8 $(\mathrm{~A})$. 3.2 .56 3.0 2.57 -51 (Br).				
	32	Brass .								
	28	German sil								
	$\begin{gathered} 6.8 \\ 2 \cdot 6 \\ 1.3 \\ 9 \\ .88 \\ 1.66 \end{gathered}$	Phosphor-b								
		Quartz fibre								
		(A.) Amagat. (B.) Benton, 1907 and 1908. (Bo.) v. Bolton, 1905 . (Br.) Bridgman, 1909. (G.) Grineisen, 1907. *Wassmuth, 1906, and Schaefer, 1902. † Horton, 1904 and 1905. \ddagger Diminishes rapidlywith increasing load. 8 Shows marked elastic fatigue. \\|Pure.\qquad								

TENSILE STRENGTHS OF MATERIALS

Tenacities or breaking stresses in dynes per sq. cm . The elastic limit is always exceeded before the breaking stress is reached. The process of drawing into wire seems to strengthen the material, and the finer the wire the greater is the breaking stress. (See Poynting and Thomson's "Properties of Matter.")

For crushing and shearing strengths, see Ewing's "Strength of Materials" or one of the Engineering "Pocket-books." For bursting strengths of tubing, see p. 39; for tensile strengths of liquids, see p. 39 .

To reduce to kilogrammes per sq. mm., it is sufficient to divide by 10^{8}; to lbs. per sq. inch, divide by 7×10^{4}; to tons per sq. inch, divide by 1.5×10^{8}. * Along the grain.

Substance.	Tenacity.	Substance.	Tenacity.
Aluminium, cast	$\begin{aligned} & \text { dynes } / \mathrm{cm.z}^{2} \\ & -6-9 \times 10^{9} \end{aligned}$	White or yellow pine *	$\begin{aligned} & \text { dynes } / \mathrm{cm} .^{2} \\ & 2-10^{9} \end{aligned}$
" rolled.	$9-1 \cdot 5$	Leather belt . .	3
Copper, cast	$1 \cdot 2-1.9$	Hemp rore	-6-1.0
" rolled	$2 \cdot 0-2 \cdot 5$	Catgut .	
Iron; (a) cast	-8-2.3	Spider thread.	1.8
(b) wrought.	2.9-4.5	Silk fibre	$2 \cdot 6$
(c) steel castings.	$2 \cdot 3-7 \cdot 0$ $4 \cdot 3-4 \cdot 9$	Quartz fibre	c. 10
High carbon annld..	70-7•7	Aluminium.	$7-2 \cdot 0$
(for springs) $\}_{\text {temprd. }}$	$9 \cdot 3-10 \cdot 8$	Copper, hard drawn	- $0 \cdot 4$
Tungsten or chrome Ni steel, 5%. 12%	$\begin{gathered} 11-12 \\ 6 \cdot 2 \end{gathered}$	Gold"	2.8-3.1
Lead	c. 16	Iron (charcoal), hard drawn	5.4-6.2
Tin. .	-16-38	" $\#$ annealed	c. 4.6
Zinc, rolled . 60°. ${ }^{\text {. }}$	1-1-1.5	Steel ; (1) ordinary; (2) tempd.	c. $11 ; 15 \cdot 5$
Brass (ordinary), $\left\{\begin{array}{l}66 \mathrm{Cu} \\ 3+\mathrm{Zn}\end{array}\right\}$ cast rolled	$1 \cdot 5-1 \cdot 9$ $2 \cdot 3-3.7$	pianoforte	18.6-23.3
Phosphor-bronze 34 Zn rolled	$2 \cdot 3-3 \cdot 7$ $2 \cdot 5-2.8$	Nickel	5.3 3.3
Gun-metal (90 Cu , io Sn) .	1.9-2.6	Silver .	2.9
Soft solder	c. ${ }^{5}$	Tantalum	$4 \cdot 2$
Glass	-3-9	Brass.	3.1-3.9
Ash,beech,oak,tealk,mahogany*	$\cdot 6-1 \cdot 1$	Phosphor-bronze, hard drawn	6.9-10'8
Fir, pitch-pine*	4-8	German silver	$4^{* 6}$

COMPRESSIBILITIES OF ELEMENTS

Coefficient of compressibility $\mathrm{C}=\frac{1}{V} \cdot \frac{\delta \mathrm{~V}}{\delta p}$, where $\delta \mathrm{V}$ is the change in volume of a volume V under a change of pressure $\delta \rho$ (temp. constant).

The values of C below are per megabar (i.e. 10^{6} dynes per sq. cm.). To express as compressibility per atmosphere, increase C by $\frac{1}{80}$ of its value. Room temp. Pressure range, $100-500$ megabars. Based on compressibility of mercury $={ }^{\circ} 0_{0} 371$ per megabar. The results show a periodic relation with atomic weight. See also pp. 27, 28.
(Richards, Zeit. Phys. Chemr., 61, 1907, and Fourn. Chem. Soc., 191 I.)

Element.	C	Element.	C	Element.	C	Element.	C
Al.	1.3×10^{-6}	Cl (liq.).	95×10^{-6}	Hg	371×10^{-6}	Si. .	$\cdot 16 \times 10^{-6}$
Sb.	2.2 "	Cr . ${ }^{\text {. }}$	77	Mo	.26 "	$\mathrm{Ag} \cdot$.	-84
As.	43	Cu	54."	Ni	- 27	Na	154
Bi.	$2 \cdot 8$	Au	47	Pd	38	S .	12.5
Br .	51.8	1.	13 "	P , red .	$9^{\circ}{ }^{\circ}$	T1	2.6
Cd	19	Fe	40	white.	$20 \cdot 3$	Sn	17
Cs.	61 "	Pb	2.2	Pt	. 21 "	Zn	15
Ca .	$5 \cdot 5$	Li	$8 \cdot 8$	K .	31.5		
C, diamond	'5 "	Mg	2.7 "	Rb	40 "		
graphite	3 "	Mn	67 "	Se	11.8		

COMPRESSIBILITIES OF LIQUIDS

$C=$ compressibility per megabar (i.e. 10^{6} dynes per $\mathrm{cm} .{ }^{2}$). To express as com. pressibility per atmosphere, increase C by $\frac{1}{80}$ of its value.

As the pressure increases C becomes less. In general a rise in temperature increases the compressibility of a liquid; but water, however, shows a minimum value of C at about $50^{\circ} \mathrm{C}$. (Amagat). The compressibility of a solution diminishes as the concentration increases (see Poynting and Thomson's "Properties of Matter.").

Where the limits of pressure are not given, they are-for Amagat, 8--37 atmos. ; for Röntgen, 8 atmos. ; for Richards, $100-200$ atmos.

Liquid.	Temp.	Comp. C per megabar.	Liquid.	Temp.	Comp. C per megabar.
Water, $1-25$ atmos. (A.)	$15^{\circ} \mathrm{C}$	48.9×10^{-6}	Carbon tetrachloride		
900-1000 " (A.)		$36 \cdot 3$	(Ri.)	$20^{\circ} \mathrm{C}$	89.6×10^{-6}
900-1000 " (A.)	198	$55^{\circ} 4$	Carbon bisulphide (A.)	15.6	85.9
2500-3000 ", (A.)	$14 \cdot 2$	$25^{\circ} 8$	Ether, 1-50 atmos. (A.)	0	$145^{\circ} 2$
Sea-water(Gra:si, 1851)	20	43.1	900-1000 " (A.)	0	64^{2}
Mercury - . . (A.)	20 15	$3 \cdot 82$ $3 \cdot 71$	Methyll acetate" - (A.)	198	$142 \cdot 2$ 95.8
Methyl alcohol, $\mathrm{CH}_{3} \mathrm{OH}$			Ethyl acetate . . (A.)	$13 \cdot 3$	95 1027
(A.)	14.7	1027	" bromide . (A.)	$99 \cdot 3$	2913
Ethyl alcohol-			" chloride (A .)	$15 \cdot 2$	151.1
1-500 atm. (A.)	0	76	Acetic acid, 1-16 atm.		
150-200 atm. (Ba.)	310	4147	(C. \& S.)	0	$40 \cdot 2$
Propyl alcohol, $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$ (R.)	$17 \cdot 7$		Glycerine, $\mathrm{C}_{3} \mathrm{H}_{5}(\mathrm{OH})_{3}$ (Q.)		
Propyl alcohol iso-(R.)	$17 \cdot 8$	1017	Olive oil . . (Q.)	$20 \cdot 5$	$62 \cdot 5$
Butylalcohol, $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$			Paraffin oil (de Metz,		
	$17 \cdot 4$		1890).	14.8	61.9
Butyl alcohol iso- (R.)	$17 \cdot 9$	$96 \cdot 8$	Petroleum (Martini)	16.5	$68 \cdot 7$
Amyl alcohol,			Pentane, $\mathrm{C}_{5} \mathrm{H}_{12}$. (G.)	20	314
$\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{OH}$ - . (R.)	$17 \cdot 7$		Benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$. (R.)	17.9	$90^{\circ} 8$
Chloroform - . (Ri.)	20	94 "	Turpentine, $\mathrm{C}_{10} \mathrm{H}_{13}$ (Q.)	$19 \cdot 7$	78.14

(A.) Amagat, Comptes Rendus, $\mathbf{1 8 8 4 - 9 3}$; (B.) Bartoli, $\mathbf{1 8 9 6}$; (Ba.) Barus, 1891 ; (C. \& S.), Colladon and Sturm, 1827 ; (G.) Grimaldi, 1886; (Q.) Quincke, Wied. Ann., 19, 1883 ; (R.) Röntgen, Wied. Ann., 44, 1891 ; (Ri.) Richards, 1907.

VISCOSITIES OF́ LIQUIDS

If two parallel planes are at unit distance apart in a fluid, and one of them is moving in its own plane with unit velocity relatively to the other plane, then the tangential force exerted per unit area on each of the planes is equal to the viscosity. The dimensions of a viscosity are $\mathrm{ML}^{-1} \mathrm{~T}^{-1}$.

For the capillary-tube method of determining viscosities, Poiseuille's formula is, Viscosity $\eta=\frac{\pi \beta r^{4} t}{8 l \mathrm{~V}}$, where p is the pressure difference between the two ends of the tube, r the radius of the tube, l its length, V the volume of liquid delivered in a time t.
viscosity of water
Determined by an efflux method and corrected for kinetic energy of outflow. (Hosking, Phil. Mag., 1909, 1, 502 ; 2, 260.)

Temp.	Viscosity.	Temp.	Viscosity.	Temp.	Viscosity.	Temp.	Viscosity.
$0^{\circ} \mathrm{C}$.	c.g.s. .01793	$20^{\text {c }} \mathrm{C}$.	-01006	$50^{\circ} \mathrm{C}$.	.00550	$90^{\circ} \mathrm{C}$.	.00316
5	- O 522	25	-00893	60	-00469	100	-00284
10	-01311	30	- 0800	70	-00406	124**	.00223
15	-1142	40	-00657	80	. 00356	153*	.00181

* de Haas, 1894.

VISCOSITY OF MERCURY
(Koch, 1881.)

Teimp.	$-20^{\circ} \mathrm{C}$	0°	20°	50°	100°	200°	300°
Viscosity (c.g.s.)	.0186	0.169	0156	.0141	.0122	.0101	.0093

VISCOSITIES OF VARIOUS LIQUIDS

Substance.	$0^{\circ} \mathrm{C}$.	10°	20°	30°	40°	50°	60°	70°
Methyl alcohol, $\mathrm{CH}_{4} \mathrm{O}$	$\begin{array}{\|l\|} \text { c.g.s. } \\ 00813 \end{array}$	-00686	. 00591	. 00515	. 00450	. 00396		
Ethyl ", $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	- 0177	-145	-119	-00989	-00827	-00697	. 00591	-00504
Propyl " ${ }^{2} \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$	-0388	-0292	-0225	-0178	-1140	-113	$\cdot 00919$	-00757
Isopropyl	-0456	-0324	-0237	-0175	-133	-103	$\cdot 00804$	-00642
Ether $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)_{2} \mathrm{O}$	-00286	-00258	-00234	-00212				
Chloroform, CHCl_{3}	-00700	-00626	-00564	-00511	-00465	-00426	-00390	
Carbon tetrachloride	-0135	-113	-00969	-00841	-00738	-00653	. 00583	-00524
bisulph dioxide	-00429	. 00396	.00367	-00342	-00319			
" ${ }_{\text {nzene, }} \mathrm{C}_{6} \mathrm{H}$		-00085	. 00071	-00053				
Aniline, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}^{\mathrm{N}} \mathrm{H}^{\text {a }}$	Oogoz	. 00759	. 006449	-00562	-02492	.00437 -189	-00390	.0035 1
Glycerine, $\mathrm{C}_{3} \mathrm{H}_{5}(\mathrm{O}$	$46 \cdot 0$	210	8.5	1 3				
Bromine	-0126	: 0111	-00993	-00898	.00817	-00746		
Turpentine, dens. $=8$	-0225	-0178	-149	-0127	-0107	-00926	.0082I	-00728
Pentane (n , $\mathrm{C}_{5} \mathrm{H}_{13}$	-00283	-00255	-00232	.00212				
Hexane (n), $\mathrm{C}_{6} \mathrm{H}_{14}$	-00396	-00355	-00320	-02290	-00264	. 00241	-0022I	
Formic acid, $\mathrm{HCO}_{2} \mathrm{H}$	-	-0224	-0178	- 0146	-0122	- 103	-0089	-0077
Acetic acid, $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$			-0122	-0104	-0090	-0079	. 0070	-0062
Propionic acid, $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$	-0152	-0129	-110	-0096	-0084	-0075	-067	-0060
Butyric Isobutyric " $\mathrm{C}_{1} \mathrm{H}_{8} \mathrm{O}_{2}$	-0228	-0185	-0154	-130	-0112	$\cdot 0097$	-0085	-0076
Isobutyric " ${ }^{\text {M }}$.	-0188	-157	-0131	-113	-0098	-0086	-0076	. 0068
Methyl formate . Ethyl	-00429	.00384	-00347	-00317				
	-00505	-00448	.00402	-00362	-00328	.00299		
Methyl a	-00478	-00425	.00381	.00344	.00312	. 00284		-

Machine oil, c. $1 / 19^{\circ}$; olive oil, $\cdot 99 / 15^{\circ}$; paraffin oil, c. $02 / 19^{\circ}$; rape oil, $1 \cdot 6 / 20^{\circ}$.

VISCOSITIES

RELATIVE VISCOSITIES OF SOME AQUEOUS SOLUTION3

Strength of solutions I normal. Viscosities relative to that of water at same temp. For a complete list, see Stöckl in L.B.M., and Moore, I'hys. Rev., 1895.

Substance.	Temp.	Relative Viscosity.	Substançe.	Temp.	Relative Viscosity.
Ammonia	$25^{\circ} \mathrm{C}$	1×02	Potassium chloride	$17^{\circ} 6 \mathrm{C}$	98
Ammonium chloride	$17 \cdot 6$	-98	Potassium iodide.	$17 \cdot 6$	91
Calcium chloride .	20	131	Sodium hydrate .	25	$1 \cdot 24$
Hydrochloric acid	25	10%	Sulphuıic acid. .	25	$1{ }^{\prime} 09$

VISCOSITIES OF SOLIDS

Venice turpentine* at $17^{\circ} \cdot 3$, I 300 , c.g.s. Shoemaker's wax + at $8^{\circ}, 4.7 \times 10^{6}$. c.g.s. Pitch \dagger at $0^{\circ}, 51 \times 10^{10} ;$ at $15^{\circ}, 1.3 \times 10^{10}$. Soda glass \dagger at $575^{\circ}, 11 \times 10^{12}$. Glacier ice, $\ddagger 12 \times 10^{13}$. Golden Syrup (Lyle), $1400 / 12^{\circ}$.

* R. Ladenburg, 1906. \dagger Trouton and Andrews, 1904. \ddagger Deeley, 1908.

VISCOSITIES OF GASES AND VAPOURS

Clerk Maxwell showed in 1860 that, on the basis of the kinetic theory, the coefficient of viscosity of a gas would be independent of the pressure, and would vary as the square root of the absolute temperature. The first relation is true except at very low pressures ; the second deduction is not supported by experiment.

Of the formulæ connecting gaseous viscosity (η) and temperature (t), there are the convenient but only approximate relation of O. E. Meyer, $\eta_{t}=\eta_{0}(1+\alpha t)$, where α is a const. ; and the less manageable but accurate formula of Sutherland (Phil. Mag., 31, 1893), who, by taking account of the effects of molecular forces in bringing about collisions which otherwise would have been avoided, derived the expression $\eta_{t}=\eta_{0} \frac{273+\mathrm{C}}{\theta+\mathrm{C}} \cdot\left(\frac{\theta}{273}\right)^{\frac{3}{3}}$, where θ is the absolute temperature, and C is Sutherland's constant. The formula only holds for temps. above the critical, and for pressures such that Boyle's law is approximately obeyed. Sutherland's relation is thus of the form (which lends itself to graphical treatment), $\theta=\frac{K \theta^{3 / 2}}{\eta}-C$, where K is a constant. (See Fisher, Phys. Rev., 1907, 1909 et seq.; O. E. Meyer's "Kinetic Theory of Gases." For a bibliography of gaseous viscosity, see Pedersen, Phys. Rev., 25, 1907.) The values below are for dry gases.

Gas or Vapour.	Temp.	η.	Observer.	Gas or Vapour.	Temp.	η.	bs
Air . .	$21^{\circ} \mathrm{C}$	$\begin{aligned} & x 10-6 \\ & 164 \end{aligned}$	Breitenbach	Nitrogen	$0^{\circ} \mathrm{C}$.	$\begin{gathered} \overline{x 10-66} \\ 166 \end{gathered}$	v.Obermayer
	0	173	" (1901)	(contd.)	11.	17 I	" (1876)
	0	171 170	Hogg, 1905	Helium	54 0	190	hultze,'or
	0	171	Fisher, 1909		15	197	huize, or
	15 99.6	181	Markowski		185	270	
	${ }^{909} 3$	221	Brêienbach	Neon Argon	15	312 210	Rankine, 'ı Schultze, 'or
Hydrogen	- 31	299 82 86	Bretienbach $\#(1901)$	Argo	0 15	210	chultze,'or
	0	86	(184	322	
	15	89	" "	Krypto	15	246	10
	99	106	"	Xenon	15	222	
	302	139	" $"$	Chlorin	0	129	Graham, '46
Oxygen	0 15	187	v.Obermayer (1876)				
	15	195 216	$\text { " } \begin{gathered} (1876) \\ " \end{gathered}$	Water(vap.)	-	90 97	Puluj, 1878
Nitrogen	-21	157	" \quad "		100	132	M.\&S § 1881

[^4]\ddagger Kundt and Warburg.
§ Meyer and Schumann.

VISCOSITIES

VISCOSITIES			OF GASES	AND VAP	APOURS (contd.)		Observer.
Gas or Vapour.	Temp.	η.	Observer.	Gas or Vapour.	Temp.	η.	
Mercury (vap.)		$\begin{aligned} & x 10^{-6} \\ & 162 * \\ & 532 \end{aligned}$	S. Koch, '83	Carbon dioxide	$99^{\circ} \mathrm{C}$.	$\begin{gathered} \times 10-6 \\ 186 \end{gathered}$	BreitenbachGraham, (1901)
						268 104	
Nitrousoxide		656 125	v.Obermayer$\text { " }(1876)$	Methane, Ethylene,	$\begin{array}{r} 0 \\ 20 \end{array}$	104	
	0	135183			-21	120 80	Breitenbach " (1901)
	10000		Graham,"'46	$\mathrm{C}_{2} \mathrm{H}_{4}$	0	97102	
Nitric		165			1599		" "
oxide	20	186		Alcohol (vap.)		128	Puluj, 18"78
Sulphur ${ }_{\text {dioxide }}$	0	1231381			0	83	
	20		"		17	89 142	" "
Sulphuret? hydrogen	0	115		Ether (vap.)	78 0	142 69	"
	20	130	"		0 16	69 73	",
Cyanogen	0	115 95 107	",		360	79	" " "
Carbon monoxide	20020	107		Chloroform(vap.)			Breitenbäch
		163	v.O'crmayer		$17 \cdot 4$61019100	103189	" (1901)
		184	\# (1876)	Benzene (vap)			
Carbon dioxide	$\begin{array}{r} -21 \\ 0 \\ 15 \end{array}$	129	Breitenbach			69	Schumann
		139	\#, (1901)			79	\% (1884)
		146	?. (118	" "

* Extrapolated.

TEMPERATURE COEFFICIENTS OF VISCOSITY
Based largely on W. J. Fisher's computations (ref. above).

Gas or Vapour.	Sutherland's Consts.		Meyer's Const. a	Gas or Vapour:	Sutherland's Consts.		Meyer's Const. a
	C	K			C	18	
Air . .	124	150×10^{-7}	-00273			246×10^{-7}	-
Hydrogen	72	66 "	-	Water (vap.) .	72	-46x	
Oxygen.	127	175 "	-02283	Carbon monoxide	102	135 "	-00269
Nitrogen	110		-00269	"\# dioxide .	240	158	-00350
Helium .	80	148	-	Nitrous oxide .		172 "	-00345
Neon. Argon	56		-	Ethylene ${ }^{\text {Chlo }}$	226	106 "	.00350
$\underset{\text { Argon }}{\text { Argon }}$.	$\left.\begin{array}{\|l\|} 170 \\ 188 \end{array} \right\rvert\,$	207 "		Chloroform (vap.)	454	159 "	

SIZE, VELOCITY, AND FREE PATH OF MOLECULES

$\rho=$ density of gas in gms./c.c. at $0^{\circ} \mathrm{C}$. $\mathrm{N}=$ number of molecules of gas per c.c. and 76 cms . at $0^{\circ} \mathrm{C}$. and 76 cms .
$p=1$ atmos. $=10132 \times 10^{6}$ dynes $/ \mathrm{cm} .^{2}$
$\theta=$ absolute temperature.
$\mathrm{R}=$ gas constant.
$\sigma=$ molecular diameter in cms.
$\begin{aligned} \mathrm{R} & =b \text { of Van der Waals' equation (p. 34). }\end{aligned}$
$k=$ thermal conductivity of gas (p. 52).
$c_{v}=$ specific heat at const. volume (p. 58).
$\eta=$ viscosity of gas (p. 31).
$m=$ mass of a single molecule (in grams).
$\mathrm{G}=$ square root of mean square molecular vel. (cm. $/ \mathrm{sec}$. at $0^{\circ} \mathrm{C}$.).
$\Omega=$ mean molecular velocity ($\mathrm{cm} . / \mathrm{sec}$.).
$\mathrm{L}=$ length of mean free path in cms.

Assuming a Maxwell-Boltzmann distribution of velocities-

$$
\begin{aligned}
\mathrm{G} & =\sqrt{3 p /(\mathrm{N} m)}=\sqrt{3 p / \rho}=\sqrt{3 \mathrm{R} \theta} \\
\Omega & =4 \mathrm{G} / \sqrt{6 \pi}=92 \mathrm{I} \mathrm{G} \\
\mathrm{~L} & =\eta /(31 \rho \Omega)=2.02 \eta / \sqrt{p p} \\
\text { Collision frequency } & =\Omega / \mathrm{L}=5 \times 10^{\circ} \mathrm{per} \text { sec. for } \mathrm{O}_{2}
\end{aligned}
$$

SIZE, VELOCITY, AND FREE PATH OF MOLECULES (conti.)

MOLECULAR SIZE

The molecular diameter σ has been calculated by the following formulx :1. The viscosity η of a gas is a function of the size of its molecules.

$$
\eta=44 \rho \Omega /\left(\sqrt{2} \mathrm{~N} \pi \sigma^{2}\right) \text {. . Jeans } \therefore \sigma=\{0 \operatorname{og} 12 \rho \mathrm{G} /(\mathrm{N} \eta)\}^{\frac{1}{2}}
$$

2. The thermal conductivity, $k=1 \cdot 6 \eta c_{v}={ }^{1} 158 \rho \Omega c_{v} / N \sigma^{2}$

$$
\therefore \sigma=\left\{\cdot 14 \sigma_{\rho} \mathrm{G} c_{r} /(\mathrm{N} k)\right)^{\frac{1}{\alpha^{2}}}
$$

3. Van der Waals', $b=2 \pi \mathrm{~N} \sigma^{3} / 3 \quad \therefore \sigma=\{3 b /(2 \pi \mathrm{~N})\}^{\}^{3}}$
4. Limiting density, i.e. density D of densest known form. $\left.\sigma=\{6 \rho /(\pi \mathrm{DN})\}_{3}\right\}^{3}$

The values of ρ and η used in calculating G and L below are given on pp. 26,31. The values of σ tabulated are mostly taken from Jeans' "Dynamical Theory of Gases," or Rudorf (Phil. Mag., 1909, p. 795). Jeans takes N $=4 \times 10^{10}$, while in the table following, the more recent value 2.75×10^{19} has been used.

Gas.	G at $0^{\circ} \mathrm{C}$.	Mean freepath, L.	Molecular diameter σ deduced from			
			η	1	b	Jt. $\rho[=$ D $]$
Hydrogen, H_{2}.	${ }_{18} 8.39 \times 1 \mathrm{c}^{\text {cmec. }}$	$18.3{ }^{\text {cm. }} \times 10^{-0}$	2.47×10^{-8}	$2{ }^{2} 40 \times 10^{\mathrm{cm}} \times 1{ }^{-8}$	2.32×10	$2.92 \times 10^{\text {cim. }}$
Helium, He	13.11 "	28.5	2.18 "	-	$2 \cdot 30$	
Nitrogen, N_{2}	4.93 "	9.4.	${ }^{3.50}$ 3.30	3.31	3.53	2.97 2.79
Oxygen, O_{2} $\mathrm{Neon} Ne.$,	${ }_{5}^{4.61}$	${ }_{\text {c }}{ }^{9} 9.95$	339 - "	3'11		$2 \cdot 79$
Argon, A	4.13 ",	too "	3	-	$2 \cdot 86$	
${ }_{\text {Krypton, }} \mathrm{Kr}$	2:86 "	9.49 "			3.14	493
${ }_{\text {Cenon, }}^{\text {Chlorine, } \mathrm{Cl}}$.	- $\begin{aligned} & 2.28 \\ & 3.07\end{aligned}$	5.61 4.57			$3 \cdot 42$	488
Methane, CH_{4}	6.48 "	779 "			-	
Ethylene, $\mathrm{C}_{2} \mathrm{H}_{4}$	$4 \cdot 88$	$5 \cdot 47$	$4 \cdot 55$	$4 \cdot 68$	-	526
$\begin{aligned} & \text { arbon } \mathrm{moo} \\ & \text { oxide, } \mathrm{CO} \end{aligned}$	$4 \cdot 93$	9.27	$3 ゙ 50$	331	-	
Carbon oxide, CO_{2} di-						
Anmionia, NH_{3}	6.28		418		-	
$\underset{\text { Nitrous oxide, }}{\substack{\text { N }}}$	3.92	6.10			-	
Nitric oxide,	J					
$\underset{\text { Nulph. }}{\text { NOdidro }}$	476	906 "	340	340		
gen,	+4t"	5.0		-	-	
SO_{2}	3.22	4.57		-	-	
Hydrochioric acil, HCl						-
Water, $\mathrm{H}_{2} \mathrm{O}$	7*08	722	4.09			345

The formulx above assume the molecules to be spherical. Sutherland (Phil. Mag., 1910), adopting his formula (see p. 3I) for the variation of η with temp., obtains the following values of σ. Unit, $10^{-8} \mathrm{~cm}$.

\mathbf{H}	He	\mathbf{A}	\mathbf{N}_{2}	\mathbf{N}_{2}	$\mathbf{N}_{2} \mathbf{O}$	$\mathbf{N O}$	$\mathbf{C O}$	$\mathbf{C O}_{2}$	$\mathbf{C}_{2} \mathrm{H}_{4}$	$\mathbf{C l}_{2}$
$\mathbf{2 . 1 7}$	$\mathbf{1 . 9 2}$	$\mathbf{2 . 6 6}$	$\mathbf{2 . 7 1}$	2.95	3.33	2.59	$\mathbf{2 . 7 4}$	$\mathbf{2 . 9 0}$	$3.3 \mathbf{1}$	3.76

CRIT!CAL DATA AND VAN DER WAALS' CONSTANTS

Critical temperature, θ_{c}, is the highest temperature at which a gas can be liquefied by subjecting it to pressure.

Critical pressure, p_{c}, is the pressure (of gas and liquid) at the critical temperature.
Critical volume, r^{\prime} c, is here defined as the ratio of the volume that a gas has at the critical temp. and press. to that which it wnuld have at $0^{\circ} \mathrm{C}$. and 760 mms ., i.e. it is the volume of gas at θ_{c} and p_{c} which at N.T.P. would have unit volume. Some writers take the critical volume to be the specific volume (c.cs. per gram) at θ_{c} and p_{c}.

Most of the characteristic equations of state which have been proposed for gases take the form $\left(p+a / v^{2}\right)(v-b)=\mathrm{R} \theta$, where p is the pressure, v the volume, θ the absolute temperature of the gas, and R is the "gas constant." a expresses the mutual attraction of the molecules. The "covolume" b is proportional to the space occupied by the molecules: O. E. Meyer takes $b=4 \sqrt{2}$ (volume of molecule). Van der Waals assumes a is constant: if this were true the constant volume and thermodynamic scales of temperatures would agree - they do not, however (see p. 44). Joule and Thomson, Clausius, Amagat, and Berthelot, among others, regard a as a function of $\theta(e . g . a \propto \mathbf{I} / \theta)$, and b as constant.

Assuming with Vian der Waals that a and b are constants, the equation can be regarded as a cubic in v, which has its three roots equal at the critical point, whence $a=27 \mathrm{R}^{2} \theta_{c}{ }^{2} /\left(64 p_{c}\right)$, and $\dot{b}=\mathrm{R} \theta_{c} /\left(8 p_{c}\right)$.

Taking pressures in atmos., and the volume of the gas at $\circ^{\circ} \mathrm{C}$. and I atmos. as $\mathrm{I}, \mathrm{R}=p v / \theta=\mathrm{I} / 273$. In these units, b is in terms of the volume of the gas at $0^{\circ} \mathrm{C}$. and 1 atmos.

Example.-For $\mathrm{CO}_{2} p_{c}=73$ atmos. and $\theta_{c}=273+31^{\circ 1}=304 \cdot 1$, whence $b=30+1 /(8 \times 273 \times 73)={ }^{\circ}$ oorg! of the volume of the gas at $0^{\circ} \mathrm{C}$. and I atmos.

See Preston's "Heat," Nernst's "Theoretical Chemistry," Young's "Stoichiometry," Berthelot (Tirav. et Mém. Bur. Intl., 1907). * Indicates calculated values.

Substance.	Critical			Van der Waals'		Observer.
	Temp. $\theta_{\text {c }}$	Press.p	Vol. r_{c}	a.	b.	
Hydro	$-234^{\circ} 5 \mathrm{C}$	$\begin{aligned} & \text { atmos. } \\ & 20 \end{aligned}$	$.0026$	04	0008S	Olszewski, '95
Oxygen.	咗	50	$00+2$	0273:	.00142	v. Wroblewski, '85
Nitrogen	14	33	-00517	00259	-00165	
Air	- 140	39	-00468	00257	.00156	Olszewski, ' 84
Helium.	-268	23		00615	-000995	Onnes, 1908
Neon	<-210					
Argon	- 117.4	52.9		00259	.00135	Ramsay and
Krypton	-62.5	54.3	005	-00462	-0178	Travers, 1900
Xenon .	147	572	-0069*	-00818	-00230	
Chlorine	146	93.5	00615*	01063	00205	Knictch, '90
Bromine	302	131	-00605	- 1434	-00202	Nadejdine, 'S5
Water	365	194.6	-00386	-118	00150	Battelli, '90
Hydrochloric acid	52.3	86	-0052*	-00697	00173	Dewar, 1884
Carbon monoxide	141.1	35%	-00505*	00275	.0016S	v.Wroblewski, '83
Carbon dioxide	31.1	73	-0066	-00717	Oci91	Andrews, 1869
Carbon bisulphi	273	72.9	-	. 02316	-00343	Eattelli, 1890
Ammonia, NH_{3}	130	1150		-00798	00161	Dewar, 1884
Nitrous oxide, N_{2}	$38 \cdot 8$	775	-00436	-00710	-0184	Villard, $189+$
Nitric oxide, NO^{2}	-93.5	71.3	-00347*	.00257	-00116	Olszewski, '85
Nitrogen tetroxide, NO_{2}	171:2	$\frac{1+7}{1+}$	00413	00756	-00138	Nadejdine, '85
Sulphuretted hydrogen	100	887	-00578*	. 00888	-00193	Olszewski, '90
Sulphrur dioxide . .	$155{ }^{\circ} 4$	$78 \cdot 9$	-00745*	01316	-00249	Sajotschewsky, ${ }^{\prime} 8$
Methane, CH	-95 5	50	-00488*	.00357	.00162	Dewar, 1884
Acetylene, $\mathrm{C}_{2} \mathrm{H}_{2}$	$36 \cdot 5$	61.6	.0069*	-0088\%	-00230	Mackintosh, '07
Ethylene, $\mathrm{C}_{2} \mathrm{H}_{4}$.	10	51.7	-00752*	- co877	00251	Olszewski, '95
Ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$ - ${ }^{\text {a }}$	34	$50 \cdot 2$	-00839*	- 0106	$.0028$	
Ethylalcohol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	243	$62 \cdot 7$.0071	. 22407	00377	Ramsay \& Young,
Ether $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$. - .	197	$35 \cdot 8$	- 158	-03496	00602	Battelli, '92
Chloroform, CHCl_{3}	260	$54^{\circ} 9$	-O133*	-0293	-00445	Sajotschewsky,'78
Aniline, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$.	425.6	$52 \cdot 3$.0183*	05282	.006 I I	Guye \& Mallet,'o2
Benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$ -	288.5	$47^{\circ} 9$	-016I*	-03726	-00537	Young, 1900

DIFFUSION OF GASES

The Ccefficient of diffusion, D, is the mass of the "diffusing" gas which crosses unit area in unit time under unit concentration gradient : the dimensions of the coefficient are $\mathrm{cm} .^{2} \mathrm{sec} .^{-1}$. D is inversely proportional to the total pressure of the two gases, and roughly proportional to the square of their absolute temperature. Total pressure 1 atmosphere. $\mathrm{H}_{2}-\mathrm{O}_{2}$ implies that H_{2} is diffusing into O_{2}.
(Sce Meyer's "Kinetic Thcory of Gases.")

Gases.	$t^{\circ} \mathrm{C}$	D	Gases.	$t^{\circ} \mathrm{C}$	D	Gas (Winkelmann).	$t^{\circ} \mathbf{C}$	D into		
								Air.	CO_{2}	H_{2}
$\begin{aligned} & \mathrm{H}_{2}-\mathrm{O}_{2} \\ & \mathrm{H}_{2}-\mathrm{O}_{2} \\ & \mathrm{H}_{2}-\mathrm{CH} \mathrm{H}_{1} \\ & \mathrm{H}_{2}-\mathrm{CO} \\ & \mathrm{H}_{2}-\mathrm{CO}_{2} \\ & \mathrm{H}_{2}-\mathrm{C}_{2} \mathrm{H}_{4} \\ & \mathrm{H}_{2}-\mathrm{N}_{2} \mathrm{O} \end{aligned}$. $677,0$.	$\left\lvert\, \begin{gathered} \mathrm{CO}-\mathrm{H}_{2} \\ \mathrm{CO}-\mathrm{C}_{2} \mathrm{H}_{4} \end{gathered}\right.$	0^{0}		Formic acid .	$0{ }^{\circ}$	131	-o88	513
	0	-681, 0			$\text { IOI, } 0$	Acetic . .	0	-106	1071	-404
	0	-625, 0 .				Propionic acid	0	-082	-0;8	$\cdot 326$
	0	-649, 0.	$\mathrm{CO}_{2}-\mathrm{CO}$	0	- 31 , 0.	Butyric acid.	0	-053	- 37	$\cdot 201$
	0	538, 0.	$\mathrm{CO}_{2}-\mathrm{CO}$	0	-141, L.	Isobutyric acid	0	$\bigcirc 7$	-047	. 271
	0	-483, 0.	$\mathrm{CO}_{2}-\mathrm{Air}$	0	142, L.	Me. alcohol .	0	$\cdot 132$	-088	$\stackrel{500}{ }$
	0	-535, 0.	$\mathrm{CO}_{2}-\mathrm{CH}_{4}$	0	146, O. ; 16 , L.	Et. ${ }_{\text {Propyl alcohol }}$	0	-102	-068	$\cdot 378$ $\cdot 315$
			$\mathrm{CO}_{2}-\mathrm{O}_{2}$.	0	18, L.	Piopyl alcohol	0	-080	-058	$\cdot 315$
O_{2}	0	-171, 0.	$\mathrm{CO}_{2}-\mathrm{N}_{2} \mathrm{O}$	0	$\cdot 1$, L. ; 15, O.	Butyl "	0	-68	- 048	-272
O	0	722, L.	$\mathrm{CO}_{2}-\mathrm{H}_{2}^{2}$	0	-55, L.	" ".	99	- 126	- 08	- 504
$\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}_{2}$	188	-155, G.	$\begin{aligned} & \mathrm{Air}-\mathrm{O}_{2} \\ & \mathrm{Air}-\mathrm{H}_{2} \end{aligned}$	$\begin{array}{r} 0 \\ 17 \end{array}$	$\begin{aligned} & \cdot 178,0 . \\ & \cdot 66, S c . \end{aligned}$	Benzene Me. acetate	0	- 75	- 03	-294
$\mathrm{H}_{2} \mathrm{O}$-Air								-84	-056	328
$\mathrm{H}_{2} \mathrm{O}$-Air	15	-246, G.	CS_{2}--Air	0	$\cdot \mathrm{I}, \mathrm{S}$.	Et. formate	0	-085	057	-336
$\mathrm{H}_{2} \mathrm{O}$-Air	18					Et. acetate	0	-71	-049	- 273
$\mathrm{H}_{2} \mathrm{O}$-Air	0	203, H.				Et. butyrate .	0	- 057	-041	-224
						Et.iso-butyrate	0	- 055	- 040	-224

G., Guslielmo, 1884 ; H., Houdaille, 1896 ; L., Lo:chuidt, 1870 ; O., v. Obermayer, 1887 ; S., Stefan, 1879 ; Sc., Schulze, 1897.

DETERMINATION OF ALTITUDES BY THE BAROMETER

Babinet's formula (Compt. Rend., 1850) is, Altitude $=\frac{\mathrm{C}\left(\mathrm{H}_{1}-\mathrm{H}_{2}\right)}{\mathrm{H}_{1}+\mathrm{H}_{2}}$, where $\mathrm{H}_{1}=$ barometer reading at lower station, H_{2} at upper station. If altitudes are in metres, and barometric heights in mms.,

$$
\mathrm{C}=32\left(500+t_{1}+t_{2}\right)
$$

where t_{1} and t_{2} are the corresponding station temperatures (${ }^{\circ} \mathrm{C}$.).
In the table below the mean temperature, $\left(t_{1}+t_{2}\right) / 2$, is taken as $10^{\circ} \mathrm{C}$., and the barometric height at sea-ltvel as 760 mm ., so that alitudes are in metres above sea-level. The values are of course only approximate. Babinet's formula is not applicable to very great altitudes.

Altitude	0	100	200	300	400	500	600	700	800	900
$\begin{aligned} & \text { metres. } \\ & 1000 \end{aligned}$	$\begin{gathered} \mathrm{mm} . \\ 760 \\ 674 \end{gathered}$	$\begin{aligned} & \text { mim. } \\ & 751 \\ & 666 \end{aligned}$	$\begin{gathered} \text { mim. } \\ 742 \\ 658 \end{gathered}$	$\begin{aligned} & \mathrm{mmm} . \\ & 733 \\ & 750 \\ & 650 \end{aligned}$	$\begin{aligned} & \mathrm{mm} . \\ & 724 \\ & 642 \end{aligned}$	mm 716 635	$\begin{aligned} & \mathrm{mm}, \\ & 707 \\ & 627 \end{aligned}$	$\begin{aligned} & \mathrm{mmln} . \\ & 699 \\ & 620 \end{aligned}$	$\begin{aligned} & \mathrm{mm} . \\ & 690 \\ & 612 \end{aligned}$	mm. 682 605

THICKNESS OF THIN METAL FOIL
Approximate thickicss of the thinnest beaten metal leaf at present commercially obtainable. Unit $10^{-6} \mathrm{~cm}$.

Metal.	Al	Cu	Au	Pt	Ag	Dutch inetal.	(Cigarette paper.)
Thickness	20	34	8	25	21	70	2500

SURFACE TENSIONS

In dynes per cm . (A) indicates liquid in contact with air, (V) indicates liquid in contact with its vapour. The surface tension of a liquid varies somewhat with the age (and contamination) of the surface.

Temperature variation. It follows from Eötvos' rule, that the surface tension T at temp. t is approximately proportional to ($t_{c}-t$), where t_{c} is the critical temp., the constant of proportionality being much the same for chemically similar substances. The surface tension at t_{c} is zero. (For critical temps. see p. 34.)

See Poynting and Thomson's "Properties of Matter."
WATER ($\iota_{c}=365^{\circ} \mathrm{C}$.)

SURFACE TENSIONS

Substance.		Temp. (t.	Surf. Tens.	Method.	Observer.
CARBON COMPOUNDS.-	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$135^{\circ} \mathrm{C}$	$\frac{\text { dynes }}{\text { cm. }}$	Capillary tube	$\left\{\begin{array}{c} \text { Ramsay } \\ \text { Shields, } \\ 1893 \end{array}\right.$
Butyric acid, $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CO}_{2} \mathrm{H}$			26.7		
			164	,	
Carbon bisulphide		$19 \cdot 4$	336	" "	"
Carbon	V	46 20	29.4 257	" "	" "
Carbon	V	250	257	" "	
Chloroform, CH	A	15	27.2	" \quad "	
Ether (ethyl), $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$	V	20	16.5	" "	$\text { Jaeger, } 1892$
($\left.\mathrm{T}_{6}=\mathrm{T}_{0}-115 t\right)$.	V	150	2.9	" "	Jas.
Ethyl acetate,	V	20	$23 \cdot 6$	" "	"
$\xrightarrow{\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}}$	V	100	14	" "	Ram
Formic acid, HCOOH .	V	17		" "	Ramsay and
	V	80	30		Shields, 1893
Olive oil ($d / 20^{\circ}=91$)	A	20	32	Curvature of drop	Magie, 1888
Paraffin oil $(d=847)$.	A	25	26.4	Capillary tube	Frankenheim,'47
Propionic acid, $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$	V	$132 \cdot$	26.6 15.5	".	$\left\{\begin{array}{c}\text { Ramsay and } \\ \text { Shields, } 1803\end{array}\right.$
Pyridine, C_{5}	V	$17 \cdot 5$	$15 \cdot 5$ 36%	$">$	(Dutoit and Fri-
Pyridine, C_{5}	V	91	$26 \cdot 5$		I derich, 1900
Toluene, $\mathrm{C}_{6} \mathrm{H}_{5} . \mathrm{CH}_{3}$	A	15	28.8	Vibrating jet	Pedersen, 1907
Turpentine, $\mathrm{C}_{10} \mathrm{H}_{16}$	A	15	27.3	Capillary tube	Kaye, 1905

SURF. TENSIONS OF SOLUTIONS		SURFACE TENS:ONS AT INTER-LIQUID BOUNDARIES			
salt solutions is generally greater than that of pure water. Dorsey		Liquids at $20^{\circ} \mathrm{C}$	Surface TensionT.	bse	
(Phil. Mag., 1897) has shown$\mathrm{T}_{n}=\mathrm{T}+\mathrm{A} \cdot n$		Water-benzene . : ", chloroform \dagger " ether " olive oil \ddagger " paraffin oil Mercury-water		Pockels, 1899	
T_{n} is the surf. tens. of a sol. of n gram - equivalents per litre, T that of water at same temp.			29	ui	
Salt	A.		427	ockels, 1899 ouy, 1908	
			alcohol chlorof		Quin
	171				
	$2 \cdot 00$				
	1.77	\ddagger Density $=\cdot 9 \mathrm{l}$.		sity	

ANGLES OF CONTACT BETWEEN GLASS AND LIQUIDS
Angles of contact vary largely with the freshness of the surfaces in contact.

Liquid.	Angle.	Cbserver.	Liquid.	Angle.	Observer.
Mercury	$52^{\circ} 40^{\prime}$ *	Quincke	Acetic acid	20°	Magie, '88
Water	$8^{\circ}-9^{\circ}$		Benzene .	0°	Mage,
Water	- $0^{\circ} \mathrm{C}$	Wilberforce	Paraffin oil .	26°	"
Methyl alcohol	0°	Magie, 'S8	Turpentine .	17°	"
Ethyl alcohol. .	0 16°	,	* For freshly formed drop, $41^{\circ} 5^{\prime}$.		
Chloroform	0°	"	- For Glass	uite cle	415

The angle of contact of water against different metals varies between 3° and 11°. SIZE OF DROPS AND THICKNESS OF LIQUID FILMS
Reference may be made to the writings of J. J. Thoinson ("Conduction of Electricity through Gases"), C. T. R. Wiison, Laby (Phil. Trans. A, 1908), Reinold \& Rücker (Phil. Trans., 1886), Lord Rayleigh,- and Johonnot (Phil. Mag., 1906).

RELATIVE HUMIDITY AND DEW-POINT

Relative humidity $=\frac{[p]_{e}}{[p]_{t}^{]}}$. Ico, where $[p]_{c}$ is the actual pressure of water-vapour at temperature t°, and is e pual to $[\phi]_{l, t,}^{p}$, the saturated vapour pressure at the dewpoint $\left.(d p) ;[p]_{\varepsilon}\right]^{\text {is }}$ the pressure of saturated vapour at t°. For a table of saturated water-vapour pressures, see p. 40. (See "Smithsonian Meteorological Tables.")

Percentage relative humidities for different dew-points and dew-point depressions are tabulated below.

Dew-point $(d p)$.	Depression of dew-point $=t^{\rho}-(d p)^{\circ}$.														
	$0^{\circ} \mathrm{C}$.	1°	2°	3°	$4{ }^{\circ}$	5°	6°	$7{ }^{\circ}$	8°	9°	10°	12^{\prime}	14°	16°	18°
$-15^{\circ} \mathrm{C}$	100	92	85	79	73	67	62	58	53	49	46	39	34	29	26
- 0	100	93	87.	81	75	70	65	61	57	53	50	44	38	34	30
$+10$	100	94	88	82	77	72	68	64	60	56	53	47	41	37	33
20	100	94	89	83	78	74	70	66	62	58	55	49	44	39	35
30	100	94	89	84	80	75	71	68	$6+$	61	57	52	46	42	38

WET AND DRY BULB HYGROMETER

Apjohn (1835), August (1825), and others, by making various assumptions (some of doubtful legitimacy), have derived formule of the type-

$$
[p]_{w}^{w_{w}}-[p]_{t}=\mathrm{AH}\left(t-t_{v}\right)\left[\mathrm{I}+\mathrm{B}\left(t-t_{w}\right)\right]
$$

where t is the temperature of the dry bulb, t_{10} that of the wet, $[p]$, is the actual pressure of water-vapour in the air (at temperature $t),[p]_{w}^{3}$ is the saturated vapour pressure of water at the temperature $\left(t_{w o}\right)$ of the wer bulb, H is the baronetric height, and A and B are constants. (See Love \& Smeal, 1911.)

The indicat ons of this hygrometer are so dependent on its environment that for most purposes B may be taken as zero, and H as constant, say 760 mmis.

If H is measured in millimetres, and temperatures in Centigrade degrees, the following values of A are suitable for the conditions mentioned :-
$\mathrm{A}=.00068$ for moving air, as in a ventilated hygrometer.
$\mathrm{A}={ }^{0} 0075$ in a Stevenson screen as used by Meteorological Office.
$\mathrm{A}=.0008$ in open air with slight wind.
$A=\cdot 00084$ in open air with no wind.
$\mathrm{A}={ }^{\circ} \mathrm{oor}$ in a small closed room.
Rizzo (1897) takes $\mathrm{A}=00075$ and $\mathrm{B}=-\cdot 003$, and the table below is derived by employing these values. [$p]_{w_{w}}^{\text {c }}$ can be got from the table of saturated vapour pressures on p .40 , and thus the desired vapour pressure $[p]_{\mathrm{c}}$ can be determined.

$$
\text { Values of }[p]_{w}^{3}-[p]_{c} \text { (Rizzo) }
$$

Barom. Press. H.	Difference of temperature of dry and wet bulb thermometers ($t-t_{u}$).									
	$1^{\circ} \mathrm{C}$	2°	3°	4°	5°	6°	$7{ }^{\circ}$	8°	9°	10°
770	${ }_{\cdot} \mathrm{mm}{ }_{5}$	$\begin{aligned} & \mathrm{mm} .3 \\ & 1: 13 \end{aligned}$	$\mathrm{mm} .$	$\mathrm{m}_{\text {min. }}^{\substack{\text { 2 } \\ 2 \\ 2}}$	$\begin{gathered} \text { m.l. } \\ 2 \cdot 78 \end{gathered}$	mm.	mm. 3.81 3.8	$\begin{aligned} & \min , \\ & 4^{\cdot} 3^{2} \end{aligned}$	$\begin{aligned} & \mathrm{mm} . \\ & 4 \cdot 87 \end{aligned}$	$\begin{gathered} \mathrm{mm} . \\ 5 \cdot 31 \end{gathered}$
760	$\bigcirc 6$	$1 \cdot 12$	$1 \cdot 67$	$2 \cdot 20$	$2 \cdot 74$	3.25	3;6	$4 \cdot 27$	4.75	$5 \cdot 24$
750	- 55	111	$1 \cdot 65$	$2 \cdot 17$	$2 \cdot 71$	$3 \cdot 21$	$3 \cdot 71$	4.21	4.69	$5 \cdot 17$
730	- 51	1.08	1.60	2.12	$2 \cdot 6.3$	$3 \cdot 12$	$3 \cdot 61$	4.10	$4 \cdot 56$	$5 \cdot 03$
700	52	1.03	15 t	$2 \cdot 03$	$2 \cdot 52$	$3^{\circ} \mathrm{Co}$	3.46	3.93	$4 \cdot 37$	$4 \cdot 82$
670	50	'99	$1 \cdot 47$	$1 \cdot 94$	$2 \cdot 42$	2.87	3.32	$3 \cdot 76$	4.19	$4 \cdot 62$
	$11^{\circ} \mathrm{C}$.	12°	13°	14°	15°	16°	17°	18°	19°	20°
770	$5 \cdot 78$	$6 \cdot 26$	6.72		762	8.06				
760	$5 \cdot 71$	6.18	6.63	7×0	752	$7 \% 9$	$8 \cdot 36$	8.77	9.18	9.56
750	$5 \cdot 63$	6.09	6.54	6.98	7.42	784	8×25	$8 \cdot 66$	9.06	9.44
730	$5 \cdot 48$	5.93	6.37	$6 \cdot 79$	7.22	$7 \cdot 63$	$8 \cdot 03$	8.43	$8 \cdot 82$	$9 \cdot 18$
700 670	5.26 5.03	$5 \cdot 69$	6.11 5.84	6.52	6.93	$7 \cdot 32$	$7 \cdot 70$	8.08	8.46	$8 \cdot 82$
670	$5 \cdot 03$	$5 \cdot 44$	$5 \cdot 84$	6.24	6.63	7×1	7×37	$7 \cdot 73$	8.08	8.43

WET AND DRY BULB HYGROMETER (contd.) GLAISHER'S FACTORS

Mr. Glaisher, in $1841-5$, took many thousands of observations with the wet and dry bulb hygrometer in Greenwich, India, and Toronto, and from simultaneous readings of a Daniell's hygrometer (now recognized as being an untrustworthy instrument) drew up a table of "factors."

The factor (f) at any dry-bulb reading is defined by

$$
\text { depression of dew-point }=t-t_{d p}=f\left(t-t_{w}\right)
$$

the notation being as above. Glaisher's factors are employed by the Meteorological Office and the Meteorological stations in this country. The hygrometer readings are taken in a Stevenson screen, which is essentially a box with double louvred sides.

The factors for a range of dry-bulb temperatures are tabulated below. The formula above yields the dew-point; and the saturated vapour pressure at the dewpoint gives the actual vapour pressure at t°. For a table of saturated vapour pressures, see p. 40. (See "The Observers' Handbook," Meteorological Office.)

Dry Bulb Temp. (t).	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
$\mathbf{- 1 0} \mathbf{1 0} \mathbf{C}$	8.76	8.73	8.55	8.26	7.82	7.28	6.62	5.77	4.92	4.04
$\mathbf{0}$	3.32	2.81	2.54	2.39	2.31	2.26	2.21	2.17	2.13	2.10
$\mathbf{+ 1 0}$	2.06	2.02	1.99	1.95	1.92	1.89	1.87	1.85	1.83	1.81
$\mathbf{2 0}$	1.79	1.77	175	1.74	1.72	1.70	1.69	1.68	$\mathbf{1} .67$	1.66
$\mathbf{3 0}$	$\mathbf{1 . 6 5}$	1.64	1.63	1.62	1.61	1.60	1.59	1.58	$\mathbf{1 . 5 7}$	1.56

CHEMICAL HYGROMETER

The values below are grams of water vapour contained in a cubic metre (10^{6} c.cs.) of saturated air at 760 mms . total pressure. Calculated from Regnault's observations.

Temp.	0	1	2	3	4	5	- 6	7	8	9
$0^{\circ} \mathrm{C}$.	$4 \cdot 84$	$5 \cdot 18$	554	$5 \cdot 93$	6.33	676	722	770	$8 \cdot 21$	$8 \cdot 76$
10	9.33	993	10.57	11025	11.96	12.71	1350	1434	$15 \cdot 22$	$16 \cdot 14$
20	$17 \cdot 12$	1814	$19: 22$	$20 \cdot 35$	21.54	22.80	$24^{\prime} 11$	25.49	26.93	28.45
30	30\%'4	3170	33.45	$35: 27$	$37^{\circ} 18$	39.18	413	43.5	$45^{\circ} 8$	$48: 2$

TENSILE STRENGTHS OF LIQUIDS

Liquids perfectly free from air can sustain considerable tension without rupture, e.g. water can withstand a tension of 5 atmospheres, alcohol 12, and strong sulphuric acid 12 atmospheres. Extensions of volume of 0.8% for water, $I^{\cdot 1} \%$ for alcohol, and 1.7% for ether have been obtained. The volume elasticity (p.29) of alcohol is the same for extension as for compression. (See Worthington, Phil. Trans. A., 1892 ; Dixon, Proc. lioy. Dub. Soc., 1909 ; Berthelot, Ann. Chimin. Phys., 30, 1850; Poynting and Thomson's "Properties of Matter.")

BURSTING STRENGTHS OF GLASS TUBING

Bursting pressures in atmospheres for German soda glass tubing. Most glasstubing is in a state of considerable strain, and a factor of safety of not less than two should usually be employed. (Roebuck, Phys. Rev., 1909; and Onnes and Braak, Kon. Ak. Wet., Amsterdam, 1908.) Ordinary boiler water-gauge glasses stand between 12 and 24 atmospheres.

Thickness of Wall.	Bore.						
	1 mm .	2	3	4	5	6	7
1 mm234	atmos.	310	280	230	220	150	190
	570	-	340	-	330	240	220
	560	420	460	400	3	,	230
		450	-	400	310	320	280

VAPOUR PRESSURES

Inter and Extrapolation of Vapour Pressures.-The Kirchhoff-RankineDupre formula, $\log p=\mathrm{A}+\mathrm{B} / \theta+\mathrm{C} \log \theta$, where p is the vapour pressure, θ the absolute temperature, and A, B, C are constants, is accurate and convenient (e.g. see p. 41). For values of A, B, C, see Juliusburger, Ann. d. Phys., p. 618, 1900.

Ramsay and Young's Method. - If two liquids, one at absolute temperature θ and the other at θ^{\prime}, have the same vapour pressure, the ratio θ / θ^{\prime}, when plotted against θ, gives a straight line. This method may be used to find roughly the vap. press. of a substance at any temperature when only its boiling-point is known.

Interpolation by Logarithms. - The curve of vapour pressure (p) against temp. (t) is approximately hyperbolic, and thus $\log p$ plotted against t gives a graph of slight curvature, which over 10° intervals of t may, for approximate work, be regarded as a straight line: thus the following method of interpolation :-

Example.-Required vap. press. of water at 15°, given

$$
\begin{array}{cccc}
t & p & \log p \\
10^{\circ} & 9^{\circ} 2 & 964 & .96++1 \cdot 243 \\
20^{\circ} & 17^{\circ} \cdot 5 & 1^{2} 243 & \frac{1}{2}=1 \cdot 104=\log 12 \cdot 7 ; \text { i.e. } p \text { at } 15^{\circ}=12 \cdot 7, \\
& \text { actually it is } 12 \cdot 8 .
\end{array}
$$

VAPOUR PRESSURE OF ICE

In mms. of mercury at $0^{\circ} \mathrm{C} . ; g=980.62 \mathrm{cms}$. per sec. ${ }^{2}$; hydrogen (const. vol.) scale of temps. (Scheel, and Heuse, Reichsanstalt Ann. d. Phys., 1909.)

Temp. .	$-50^{\circ} \mathrm{C}$	-40°	-30°	-20°	-10°	-5°	-2°	0°
Vap. press.	0.030 mm.	.096	.288	784	1.963	3.022	3.885	4.579

(SATURATED) VAPOUR PRESSURE OF WATER

In mms. of mercury at 0° C. ; $g=980.67 \mathrm{cms}$. per sec. ${ }^{2}$ Thermodynamic scale of temp. (see p. 44). From -20° to 0° the observations are due to Scheel and Heuse (v. ice); from 0° to 50°, to Thiesen and Scheel; from 50° to 200°, to Holborn and Henning, Reichsanstalt (Ann. d. Phys., 26, 833, 1908). For vapour pressures at temps. near 100° see also the table of boiling-points on next page.

Vap. press. at $-20^{\circ} \mathrm{C}$., ${ }^{\circ} 960 \mathrm{~mm} . ;-10^{\circ}, 2^{\circ} 160 ;-5^{\circ}, 3^{\circ} 17 \mathrm{I} ;-2^{\circ}, 3^{\circ} 95^{8} ;-1^{\circ}, 4^{\circ} 25^{\circ}$.

Temp.	0	1	2	3	4	5	6	7	8	9
$\begin{aligned} & 0^{\circ} \mathbf{C} . \\ & 10 \\ & 20 \\ & 30 \end{aligned}$	4.579	4.924	5.290	5.681	6.097	6.541	7.011	7.511	8.042	8.606
	9.205	9.840	10.513	11.226	11980	12.779	13.624	14.517	15.460	16.456
	17.51	18.62	19.79	21.02	22.32	23.69	$25 \cdot 13$	26.65	28.25	29.94
	$31^{\prime 7} 1$	$33 \cdot 57$	$35^{\circ} 53$	37.59	$39^{\prime \prime} 7$	42.02	44.40	$46 \cdot 90$	49.51	52.26
	0	2	4	6	8	10	12	14.	16	18
40	55:13	61.30	68.05	75.43	83.50	92.30	101.9	112.3	123.6	135.9
60	149.2	163.6	179.1	195.9	214.0	233.5	254.5	2771	3013	327.2
80	$355^{\circ} \mathrm{I}$	384.9	416.7	$450 \cdot 8$	$487 \cdot 1$	$525 \cdot 8$	$567 \cdot 1$	$6 \mathrm{I}^{\circ} \mathrm{O}$	6577	7073
100	$760 \cdot 0$	815.9	$875 \cdot 1$	937.9	1004	10745	1149	1227	1310	1397
120	1489	1586	1687	1795	1907	2026	2150	2280	2416	2560
140	2709	2866	3030	3202	3381	3569	3764	3968	4181	4402
160	4633	4874	5124 8230	5384 8608	5655 8999	5937 9404	6229 9823	$\begin{array}{r}6533 \\ \\ \hline 0256\end{array}$	6848 10705	7175 11168
180	7514	7866	8230	8608	8999	9404	9823	10256	10705	11168
200	11647	12142	12653	-	-	-	-	-	-	-

(Battelli, 1892.)

Temp. .	$220^{\circ} \mathrm{C}$.	240°	260°	280°	300°	320°	340°	360°
Vap. Press.	$17,380 \mathrm{~mm}$.	25,170	35,760	50,600	67,620	88,340	113,830	141,870

Interpolate logs of vapour pressures as explained above.

BOILING-POINT OF WATER UNDER VARIOUS BAROMETRIC PRESSURES

Hydrogen scale of temps. Pressures in mms, of mercury at $0^{\circ} \mathrm{C}$.; $g=980.6_{2}$ cms. per sec. ${ }^{2}$ (Regnault's measurements ; reduced by Broch, 1881 ; recalculated by Wiebe, 1893.)

Barcmetric Height.	0	1	2	3	4	5	6	7	8	9
	${ }^{\circ} \mathrm{C}$.									
680 mm . 690	$96 \cdot 91$ $97 \cdot 32$	96.95 .36	97.00 40	97.03 .44	$\begin{array}{r}97 \\ \hline 107 \\ \hline 8 \\ \hline 8\end{array}$	$\begin{array}{r}9711 \\ \hline \cdot 52\end{array}$	$\begin{array}{r}97 \cdot 15 \\ \hline .56\end{array}$	$\begin{array}{r}97.20 \\ \hline 59\end{array}$	$97 \cdot 24$ $\cdot 63$	$97 \cdot 28$.67
700	${ }_{97} 971$	$\cdot 75$		- 83	8	91	$\cdot 95$	-99	98.03	98.07
710	$98 \cdot 11$	99.14	98-18	98.22	98.26	98.30	98.34	98•3	${ }_{4}{ }^{2}$	${ }^{4} 45$
720	98.49	- 53	${ }^{-} 57$	${ }^{-61}$	${ }^{6} \cdot 65$	-69	${ }_{7} 72$	$7{ }^{7}$. 80	. 84
730	98.88	$\cdot 91$	-95	$\cdot 99$	99.03	99.07	99.10	99.14	99:18	99.22
	99.25	99.29	99.33	$99 \cdot 37$	${ }^{4} 4$	44	48	${ }^{5} 5$. 56	- 59
750	99.63	${ }^{-67}$	${ }^{70}$	${ }^{7} 74$	$\cdot{ }^{-7}$	81	. 85	. 89	$\cdot 93$	-96
760	$100 \cdot 0$	100.03	100.07	$100 \cdot 11$	$100 \cdot 15$	100. 18	100.22	100.26	100.29	100'33
770	100.37	40	- 44	47	-51	55	$\cdot 58$	$\cdot 62$. 66	. 69
780	100.73	76	80	84	87	91	$\cdot 94$.98	101.01	101'05

VAPOUR PRESSURE OF MERCURY

In mms. of mercury at $0^{\circ} \mathrm{C}$. Reduced from the observations of Hertz, Ramsay and Young, Callendar and Griffiths, Pfaundler, Morley, Gebhardt, Cailletet, Colardeau, Riviere. For interpolation from 15° to 270°.

$$
\begin{equation*}
\log p=15.24431-3623.932 / \theta-2.367233 \log \theta . \tag{A}
\end{equation*}
$$

From 270° to 450°
$\log p=10.04087-3271 \cdot 245 / \theta-7020537 \log \theta$
$\frac{\delta p}{\delta t}$ at the boiling-point $=13.6 \mathrm{~mm}$. per degree (Laby, Phil. Mag., Nov., 1908).

Temp.	Vap. Press.	Temp.	Vap. Press.	Temp.	Vap. Press.	Temp.	Vap. Press.	Temp.	Vap. Press.
$0^{\circ} \mathrm{C}$	-00016 ${ }^{\text {mm }}$	25°	.$_{.00168}$	60°	${ }_{.0246}^{\text {mm. }}$	250°	${ }_{75}^{\mathrm{mm}} . \mathrm{S}_{3}$	500°	atmos. 8
	-00026*	30	-C0257	80	- 885	300	${ }_{248}{ }^{7} 6$	600	22.3
10	-60043*	35	.00387	100	-2; ${ }^{2}$	356.7	760	700	50
15	-0069	40	-00574	150	2.88	400	1566	800	102
20	-colo9	50	-0122	200	17.81	450	3229	880	162

* Extrapolated by formula A.

VAPOUR PRESSURE OF ETHYL ALCOHOL

Vap. press. in mms. of mercury at $\mathrm{o}^{\circ} \mathrm{C}$. Calculated by Bunsen from Regnault's results (1862), which are in good agreement with the mean of those of Ramsay and Young (1886), and Schmidt (1891).

Regnault, Vapour press. at $-20^{\circ}, 3.34 \mathrm{~mm}$; at $-10^{\circ}, 6.47 \mathrm{~mm}$.

T mmp .	0.	1	2	3	4	5	6	7	8	9
$0^{\circ} \mathrm{C}$	12.73	13.65	14.6	15.59	16.62		18.84	20.04	21.31	$22 \cdot 66$
10	24.08	25.59	$27 \cdot 19$	28.9	$30 \cdot 7$	$32 \cdot 6$	34.6	$36 \cdot 8$	$39^{\circ} \mathrm{O}$	41.4
20	$44^{\circ} \mathrm{O}$	46.7	49.5	$52 \cdot 5$	$55^{\circ} 7$	59°	62.5	66.2	$70^{\prime} 1$	$74^{\prime} \mathrm{I}$

(Ramsay and Young, 1886.)

Temp.	$30^{\circ} \mathrm{C}$	40°	50°	60°	70°	80°	100°	120°	140°	160°
Press.	$78^{\circ} \mathrm{I} \mathrm{mm}$.	$133^{\circ} 4$	$219^{\circ} 8$	$350^{\circ} 2$	541	812	1692	3220	5670	9370

Interpolate logs of vapour pressures as explained on p. 40.

VAPOUR PRESSURES OF ELEMENTS

$p=$ vapour pressure in mms. of mercury at 0° C. lat. 45° and sea-level $(g=98062)$ (i.e. $1 \mathrm{~mm} . \mathrm{Hg}=1333^{\circ} 2$ dynes per $\left.\mathrm{sq} . \mathrm{cm}\right)$. If followed by at., p is in atmospheres; $\theta=$ absolute temp. (A.) ; $t=$ temp. in ${ }^{\circ} \mathrm{C}$. ; (s) solid; (l) liquid. The thermometry is in many cases somewhat dubious.

Interpolate logs of vapour pressures as explained on p. 40.

Argon (OIszewski, 189j)	$\begin{array}{lll} \mathrm{t} & -121^{\circ} \mathrm{C} . \\ \mathrm{g} & 50^{\circ} 6 \mathrm{at} . \\ \hline \end{array}$	$\begin{array}{r} -128.6 \\ 38 \cdot 0 \end{array}$	$\begin{array}{r} -129 \cdot 6 \\ 35 \cdot 8 \end{array}$	$\begin{array}{r} -134.4 \\ 29.8 \end{array}$	$\begin{gathered} -135 \cdot 1 \\ 290 \end{gathered}$	$\begin{gathered} -136 \cdot 2 \\ 27 \cdot 3 \end{gathered}$	$\begin{gathered} -138 \cdot 3 \\ 25 \cdot 3 \end{gathered}$	$\begin{gathered} -1391 \\ 23 \% \end{gathered}$		
Argon Krypion Xenon (Ramsay \& Travers)	$\left[\begin{array}{ll} \begin{array}{ll} \theta & 78^{\circ} \\ \theta^{\prime} & \mathrm{A} \\ \theta & 110^{\circ} \cdot 5 \mathrm{~A} \\ \theta & 148^{\circ} 9 \mathrm{~A} \\ \mathrm{p} & 300 \mathrm{~mm} . \end{array} \end{array}\right.$	$\begin{aligned} & 86.9 \\ & 1213 \\ & 163.9 \\ & 760 \end{aligned}$	$\begin{array}{r} 97.9 \\ 135.2 \\ 182.9 \\ 2000 \\ \hline \end{array}$	107.3 $147 \cdot 3$ 199.6 4000	$155 \cdot 6$ 40,200	$\begin{aligned} & =\text { crit. } \\ & 210 \cdot 5 \\ & \text { - } 1,240 \end{aligned}$		mp . crit.	$n \mathrm{p} \text {. }$	
Bromine (Ramsay \& Young, i886)	$\left[\begin{array}{l} t-16 \cdot 6 \mathrm{C} . \\ \mathrm{g} \quad 20 \mathrm{~mm} . \end{array}\right.$	$\begin{gathered} -120 \\ 30 \end{gathered}$	$\begin{array}{r} -50 \\ 50 \\ \hline \end{array}$	$\begin{aligned} & 8.2 \\ & 100 \end{aligned}$	$\begin{array}{r} 16.9 \\ 150 \\ \hline \end{array}$	$\begin{aligned} & 23 \cdot 4 \\ & 200 \end{aligned}$	$\begin{aligned} & 40.5 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & 51 \cdot 9 \\ & 600 \end{aligned}$	$\begin{gathered} 58.7 \\ 760 \\ \hline \end{gathered}$	
$\begin{aligned} & \text { Chlorins } \\ & \text { (Knietsch, 1890). } \end{aligned}$	$\begin{array}{cc} \mathrm{t} & -80^{\circ} \mathrm{C} . \\ \mathrm{p} & 62.5 \mathrm{~mm} . \end{array}$	$\begin{aligned} & -60^{\circ} \\ & 210 \end{aligned}$	$\begin{gathered} -40 \\ 560 \end{gathered}$	$\begin{gathered} -33.6 \\ 760 \\ \hline \end{gathered}$	$\begin{aligned} & -20 \\ & 1.84 \text { at. } \end{aligned}$	$\begin{gathered} 0 \\ 3.66 \end{gathered}$	$\begin{gathered} 10 \\ 4.95 \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ 6 \cdot 62 \end{gathered}$	$\begin{gathered} 30 \\ 8.75 \\ \hline \end{gathered}$	
Iodine (Baxter, Hickey, \& Holmes, 1907)	$\left[\begin{array}{cc} \mathrm{c} & 0^{\circ} \mathrm{C} . \\ \mathrm{p} & 03 \mathrm{~mm} . \end{array}\right.$	$\begin{gathered} 15 \\ \cdot 131 \end{gathered}$	$\begin{gathered} 30 \\ .469 \end{gathered}$	$\begin{gathered} 55 \\ 3 \cdot 08 \end{gathered}$	$\begin{aligned} & 85 \\ & 20 \end{aligned}$	$\begin{aligned} & 117 \\ & 100 \end{aligned}$	$\begin{aligned} & 137 \\ & 200 \end{aligned}$	$\begin{gathered} 160 \cdot 9 \\ 400 \end{gathered}$	$\begin{gathered} 185 \cdot 3 \\ 760 \end{gathered}$	
Hydrogen (Travers \& Jaquerod, 1902).	$\left[\begin{array}{cc} \mathrm{t} & -258^{\circ} \cdot 2 \mathrm{C} \\ \mathrm{p} & 100 \mathrm{~mm} . \end{array}\right.$	$-256 \cdot 7$	$\begin{gathered} -255 \cdot 7 \\ 300 \\ \hline \end{gathered}$	$\begin{gathered} -255 \cdot 0 \\ 400 \end{gathered}$	$\begin{gathered} -254.3 \\ 500 \end{gathered}$	$\begin{gathered} -253 \\ 600 \end{gathered}$	$\begin{gathered} -253.2 \\ 7001 \\ \hline \end{gathered}$	$\begin{array}{r} -252 \\ 760 \end{array}$	H. Scale	
$\begin{aligned} & \text { Helium } \\ & \text { (Onnes, 1911) } \end{aligned}$	$\left[\begin{array}{cc} \begin{array}{c} 2 \\ 0 \end{array} & 0.2 \mathrm{~A} . \\ 0 & 0.2 \mathrm{~mm} . \end{array}\right.$	$\begin{aligned} & 4 \cdot 3 \\ & 760 \end{aligned}$	-							
Mercury	See p. 41.			\| Ra. Emanation	See p. 103.					
Nitrogen (Baly, 1900 Fischer \& Alt., 1902)	$\left[\begin{array}{ll} \theta 2^{\circ} \cdot 5 \mathrm{~A} \\ \mathrm{p} & 86 \mathrm{~mm} . \end{array}\right.$	$\begin{aligned} & 67 \cdot 8 \\ & 200 \end{aligned}$	$\begin{gathered} 72.4 \\ 400 \end{gathered}$	$\begin{aligned} & 77 \cdot 3 \\ & 760 \end{aligned}$	$\begin{gathered} 80 \\ 1013 \end{gathered}$	$\begin{gathered} 83 \\ 1386 \end{gathered}$	$\begin{array}{r} 86 \\ 1880 \end{array}$	$\begin{array}{r} 89 \\ 2465 \end{array}$	$\begin{gathered} 91 \\ 2916 \end{gathered}$	
Oxygen (Jaquerod, Traver \& senter, 1902).	$\left[\begin{array}{l} 79^{\circ} 1 \mathrm{~A} . \\ \mathrm{p} \\ 200 \mathrm{~mm} . \end{array}\right.$	$\begin{gathered} 82.1 \\ 300 \\ \hline \end{gathered}$	$\begin{gathered} 84 \cdot 4 \\ 400 \end{gathered}$	$\begin{gathered} 86 \cdot 3 \\ 500 \end{gathered}$	$\begin{gathered} 87 \cdot 9 \\ 600 \end{gathered}$	$\begin{gathered} 89 \cdot 3 \\ 700 \\ \hline \end{gathered}$	$\begin{aligned} & 90 \cdot 1 \\ & 760 \\ & \hline \end{aligned}$	$\begin{aligned} & 90 \cdot 6 \\ & 800 \\ & \hline \end{aligned}$	I. Scale	
$\begin{aligned} & \hline \text { Phosphorus } \\ & \text { (Schrötter, } 1848 \text {) } \end{aligned}$	$\begin{array}{ll} \mathrm{t} & 165^{\circ} \mathrm{C} . \\ \mathrm{g} & 120 \mathrm{~mm} . \end{array}$	$\begin{aligned} & 170 \\ & 173 \end{aligned}$	$\begin{aligned} & 180 \\ & 204 \end{aligned}$	$\begin{aligned} & 200 \\ & 266 \end{aligned}$	$\begin{aligned} & 209 \\ & 339 \end{aligned}$	$\begin{aligned} & 219 \\ & 359 \end{aligned}$	$\begin{aligned} & 226 \\ & 393 \end{aligned}$	$\begin{aligned} & 230 \\ & 514 \end{aligned}$	$\begin{gathered} 287 \cdot 3 \\ 760 \\ \hline \end{gathered}$	
Sulphur (Ruff \& G $\text { B., } 1899 \text {; C., } 180$	$\begin{array}{lll} \mathrm{t} & 50^{\circ} & \mathrm{C} . \\ \mathrm{p} & \cos 3 & \mathrm{~mm} . \\ \hline \end{array}$	$\begin{aligned} & 100 \\ & .0089 \end{aligned}$	$\begin{array}{r} 147 \\ -192 \end{array}$	$\begin{aligned} & 211 \\ & 3.14 \end{aligned}$	$\begin{gathered} 400 \\ \text { c. } 372 \end{gathered}$	$\begin{gathered} 444: 5 \\ 760 \end{gathered}$	$\begin{gathered} \delta \mathrm{t} / \mathrm{sp} \\ \text { B. } \end{gathered}$	$\begin{aligned} & 0.09 / \\ & \text { see } p \text {. } \end{aligned}$	n. near	
For a comp'ete list, see Schenck in L.B.M.										
Hydrochloric acid (F., 1845 ; Ansdell, 1 SSO).	$\left\lvert\, \begin{array}{c\|c} \mathrm{t} & -73 \cdot 3 \mathrm{C} . \\ \mathrm{p} & \mathrm{r} \cdot \mathrm{sat} . \end{array}\right.$	$\begin{array}{r} -45 \cdot 5 \\ 6.3 \end{array}$	$\begin{array}{r} -23 \cdot 3 \\ 12 \cdot 8 \end{array}$	$\begin{aligned} & -3 \cdot 9 \\ & 23 \cdot 1 \end{aligned}$	$\begin{array}{r} 400 \\ 29 \cdot 8 \end{array}$	$\begin{aligned} & 9 \cdot 2 \\ & 33 \cdot 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 13 \cdot 8 \\ & 377 \\ & \hline \end{aligned}$	$\begin{array}{r} 22.0 \\ 45 \% \\ \hline \end{array}$	$\begin{array}{r} 33 \cdot 4 \\ 58 \cdot 8 \end{array}$	
Sulphuretted hydrogen (R., IS62) .	$\begin{aligned} & -25^{\circ} \mathrm{C} . \\ & \mathrm{p} \\ & \hline \end{aligned}$	$\begin{gathered} -15 \\ 6 \cdot s_{4} \end{gathered}$	$\begin{gathered} -5 \\ 9^{\prime} 3 \end{gathered}$	$\begin{gathered} 0 \\ 10.8 \end{gathered}$	$\begin{aligned} & 10 \\ & 14.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 237 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 36 \cdot 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & 44^{\circ} 4 \\ & \hline \end{aligned}$	$\begin{array}{r} 70 \\ 53.1 \end{array}$	
Sulphur dioxide (Regnault, \& S62 $^{\text {) }}$	$\left[\begin{array}{cc} \mathrm{t} & -30^{\circ} \mathrm{C} \\ \mathrm{p} & 39 \mathrm{at} . \end{array}\right.$	$\begin{array}{r} -20 \\ \cdot 63 \end{array}$	$\begin{aligned} & -10 \\ & 100 \end{aligned}$	$\begin{aligned} & 0 \\ & 1.53 \end{aligned}$	$\begin{aligned} & 10 \\ & 2 \cdot 26 \end{aligned}$	$\begin{aligned} & 20 \\ & 3^{\prime} 24 \\ & \hline \end{aligned}$			$\begin{aligned} & 50 \\ & 8 \cdot 19 \end{aligned}$	
$\begin{aligned} & \text { Ammonia, } \mathrm{NHI}_{3} \\ & \text { (Brill, } 1906 \text {) } \end{aligned}$	$\begin{aligned} & \mathrm{t}-80^{\circ} \mathrm{C} . \\ & \mathrm{p}-35^{2} \mathrm{~mm} . \end{aligned}$	$\begin{array}{r} -77 \cdot 6 \\ 44 \cdot 1 \\ \hline \end{array}$	$\begin{array}{r} -70.4 \\ 74.9 \\ \hline \end{array}$	$\begin{gathered} -64 \cdot 4 \\ 116 \cdot 0 \end{gathered}$	$\begin{aligned} & -60 \cdot 8 \\ & 157.6 \\ & \hline \end{aligned}$	$\begin{aligned} & -54 \cdot 4 \\ & 239 \cdot 5 \end{aligned}$	$\begin{aligned} & -46 \cdot 2 \\ & 403 \cdot 5 \\ & \hline \end{aligned}$	$\begin{aligned} & -39 \cdot 8 \\ & 568 \cdot 2 \\ & \hline \end{aligned}$	$\begin{array}{r} -330 \\ 761 \end{array}$	
Nitrous oxide, $\mathrm{N}_{2} \mathrm{O}$. (Cailletet, ${ }^{7} 8$; R, '62)	$\begin{aligned} & \mathrm{t}=80^{\circ} \mathrm{C} . \\ & \mathrm{ip} \quad 19 \mathrm{at} . \end{aligned}$	$\begin{aligned} & -60 \\ & 5^{\circ} 05 \end{aligned}$	$\begin{gathered} -40 \\ 11 \circ \end{gathered}$	$\begin{aligned} & -20 \\ & 23 \cdot 1 \end{aligned}$	$\begin{gathered} -10 \\ 28 \cdot 9 \end{gathered}$	$\begin{gathered} 0 \\ 36 \cdot 1 \end{gathered}$	$\begin{aligned} & 10 \\ & 448 \end{aligned}$	$\begin{aligned} & 20 \\ & 553 \\ & \hline \end{aligned}$	$\begin{array}{r} 40 \\ 83.4 \end{array}$	
Nitric oxide, NO (Olszewski, 188j)	$\left[\begin{array}{r} \mathrm{t} \\ \mathrm{p} \\ \hline \end{array}\right.$	$\begin{array}{r} -167 \\ -182 \end{array}$	$\begin{array}{r} -138 \\ 5.4 \\ \hline \end{array}$	$\begin{array}{r} -129 \\ 10.6 \end{array}$	$\begin{array}{r} -119 \\ 200 \end{array}$	$\begin{gathered} -110 \\ 31 \cdot 6 \end{gathered}$	-105	$\begin{gathered} -100 \cdot 9 \\ 49 \cdot 9 \end{gathered}$	$\begin{array}{r} -97.5 \\ 57.8 \\ \hline \end{array}$	
Nickel carbonyl, NiCO_{4} (D. \& Jones, 1903).	$\begin{aligned} & \mathrm{t} \\ & \mathrm{p} 9^{\circ} \mathrm{C} . \\ & 24^{2} 3 \mathrm{~mm} . \end{aligned}$	$\begin{aligned} & -7 \\ & 104.3 \end{aligned}$	$\begin{aligned} & -2 \\ & 129^{\prime} 1 \end{aligned}$	$\begin{gathered} 0 \\ 144.5 \end{gathered}$	$\begin{aligned} & 10 \\ & 2150 \end{aligned}$	$\begin{gathered} 16 \\ 283.5 \end{gathered}$	$\begin{aligned} & 20 \\ & 329 \cdot 5 \end{aligned}$	$\begin{aligned} & 30 \\ & 462 \end{aligned}$	-	

Interpolate logs of vapour pressures as explained on p. 40.

VAPOUR PRESSURES OF COMPOUNDS (contd.)

Interpolate logs of vapour pressures as explained on p. 40.

Carbon dioxide (Zeleny \& Smith, 1906)	$\begin{array}{ll} \mathrm{p} & 2.5 \end{array}$	$\begin{aligned} & 00 \\ & 119 \end{aligned}$	$\begin{array}{r} -80 \\ 657 \end{array}$	$\begin{gathered} -65(s) \\ 2100 \end{gathered}$	$\begin{array}{r} \hline-56.4 \\ 3910 \end{array}$	$\begin{aligned} & 65(l) \\ & 2508 \end{aligned}$	$\begin{aligned} & 40(l) \\ & 7510 \end{aligned}$	$\begin{aligned} & -20(l) \\ & 14,830 \end{aligned}$	$\begin{gathered} -10(l) \\ 19,630 \end{gathered}$	
Carbon bisulphide (Regnault, 1862)	$\begin{array}{ll} \mathrm{t} & -20^{\circ} \mathrm{C} . \\ \mathrm{p} & 47.3 \mathrm{~mm} \\ \hline \end{array}$	$\begin{aligned} & -10 \\ & 79.4 \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ 128 \\ \hline \end{gathered}$	$\begin{aligned} & 10 \\ & 198 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 298 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 618 \end{aligned}$	$\begin{array}{r} 60 \\ 1164 \\ \hline \end{array}$	$\begin{gathered} 80 \\ 2033 \\ \hline \end{gathered}$	$\begin{array}{r} 100 \\ 3325 \\ \hline \end{array}$	
Chloroform, CHCl_{3} (Regnault, 1862).	$\begin{array}{r} 20^{\circ} \mathrm{C} . \\ \mathrm{p} \\ 160.5 \mathrm{~mm} . \end{array}$	$\begin{aligned} & 30 \\ & 248 \\ & \hline \end{aligned}$	$\begin{array}{r} 40 \\ 369 \\ \hline \end{array}$	$\begin{aligned} & 50 \\ & 535 \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & 755 \\ & \hline \end{aligned}$	$\begin{gathered} 70 \\ 1042 \end{gathered}$	$\begin{gathered} 80 \\ 1403 \\ \hline \end{gathered}$	$\begin{gathered} 90 \\ 1865 \\ \hline \end{gathered}$	$\begin{array}{r} 100 \\ 2429 \\ \hline \end{array}$	
Carbon tetrachloride, CCl_{4} (R., r 862).	$\begin{array}{cc} t & -20^{\circ} \mathrm{C} . \\ \mathrm{p} & 9.8 \mathrm{~mm} . \\ \hline \end{array}$	$\begin{gathered} -10 \\ 18.47 \\ \hline \end{gathered}$	$\begin{aligned} & 0 \\ & 32.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 56 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 91 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 215 \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & 447 \end{aligned}$	$\begin{aligned} & 80 \\ & 84.3 \end{aligned}$	$\begin{array}{r} 100 \\ 1467 \\ \hline \end{array}$	
Acetylene, $\mathrm{C}_{2} \mathrm{H}_{2}$. (Villard, 1895)	$\begin{array}{cc} \mathrm{t} & -90^{\circ} \mathrm{C} . \\ \mathrm{p} & -69 \mathrm{at} . \end{array}$	$85(s)$	$\begin{aligned} & -81 \\ & 1.25 \end{aligned}$	$\begin{array}{r} -70 \\ 2.22 \end{array}$	$\begin{array}{r} -50 \\ 5 \cdot 3 \end{array}$	$\begin{array}{r} -23.8 \\ 13.2 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 26.05 \end{aligned}$	$\begin{aligned} & 20 \cdot 2 \\ & 42.8 \end{aligned}$	$\begin{gathered} 36 \cdot 5 \\ 6 \mathrm{r} \cdot 6 \text { (M.) } \end{gathered}$	
$\begin{aligned} & \text { Banzene, } \mathrm{C}_{6} \mathrm{H}_{6} \\ & \text { (Young, } 889 \text {) } \end{aligned}$	$\begin{array}{rc} t & -10^{\circ} \mathrm{C} . \\ \mathrm{p} & 14^{\circ} 8 \mathrm{~mm} . \end{array}$	$\begin{gathered} 0 \\ 26 \cdot 5 \end{gathered}$	$\begin{aligned} & 10 \\ & 454 \end{aligned}$	$\begin{aligned} & 20 \\ & 746 \end{aligned}$	$\begin{gathered} 40 \\ 181.1 \\ \hline \end{gathered}$	$\begin{aligned} & 60 \\ & 389 \end{aligned}$	$\begin{aligned} & 80 \\ & 754 \end{aligned}$	$\begin{aligned} & 100 \\ & 1344 \end{aligned}$	$\begin{array}{r} 120 \\ 2238 \end{array}$	
Aniline, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$. (Kahlbaum, 1898)	$\begin{array}{ll} 100^{\circ} \cdot 9 \mathrm{C} . \\ \mathrm{g} & 50 \mathrm{~mm} . \\ \hline \end{array}$	$\begin{aligned} & 113 \cdot 4 \\ & 100 \end{aligned}$	$\begin{aligned} & 1387 \\ & 200 \end{aligned}$	$\begin{aligned} & 151 \cdot 5 \\ & 300 \end{aligned}$	$\begin{aligned} & 161 \cdot 1 \\ & 400 \end{aligned}$	$\begin{gathered} 168.7 \\ 500 \end{gathered}$	$\begin{gathered} 175 \cdot 0 \\ 600 \end{gathered}$	$\begin{aligned} & 1808 \\ & 700 \\ & \hline \end{aligned}$	$\begin{array}{r} 183.9 \\ -\quad 760 \\ \hline \end{array}$	
$\begin{aligned} & \mathrm{Bromnaphthalene}_{\mathrm{C}_{10} \mathrm{H} \mathrm{H}_{7} \mathrm{Br}(\mathrm{Ra} \text { \& } \mathrm{Y} ., \mathrm{I} \dot{8} 5)^{\circ}} \end{aligned}$	$\begin{array}{ll} t & 215^{\circ} \mathrm{C} . \\ \mathrm{p} & 158.9 \mathrm{~mm} . \end{array}$	$\begin{aligned} & 220 \\ & 181.8 \end{aligned}$	$\begin{gathered} 230 \\ 236^{\circ} \end{gathered}$		$\begin{aligned} & 250^{\circ} \\ & 3_{3}^{36 \cdot 4} \end{aligned}$	$\begin{aligned} & 260 \\ & 4874 \end{aligned}$	$\begin{aligned} & 270 \\ & 6088 \end{aligned}$	$\begin{aligned} & 275 \\ & 6779 \end{aligned}$	$\begin{array}{r} 2804 \\ 760 \\ \hline \end{array}$	
Me . alcohol, $\mathrm{CH}_{3} \mathrm{OlI}$ (R., '62 ; Ra.\& Y. ; Ri., ;86)	$\begin{array}{lll} \mathrm{t} & -10^{\circ} \mathrm{C} . \\ \mathrm{p} & 14.8 \mathrm{~mm} . \end{array}$	$\begin{aligned} & 0 \\ & 28 \cdot 5 \end{aligned}$	$\begin{gathered} 17 \\ 78 \cdot 3 \end{gathered}$	$\begin{aligned} & 20 \\ & 88 \cdot 7 \end{aligned}$	$\begin{aligned} & 30 \\ & 150 \end{aligned}$	$\begin{gathered} 50 \\ 381 \cdot 7 \\ \hline \end{gathered}$	$\begin{gathered} 80 \\ 1238 \\ \hline \end{gathered}$	$\begin{aligned} & 120 \\ & 4312 \\ & \hline \end{aligned}$	$\begin{array}{r} 150 \\ 9361 \end{array}$	
$\begin{aligned} & \text { n. propyl alcohol, } \mathrm{t}_{\mathrm{C}} \mathrm{C}_{3} \mathrm{H}, \mathrm{OH} \\ & \text { (Ra. \& Y.; S.; Ri., } \\ & \hline \end{aligned}$	$\begin{array}{cc} \mathrm{t} & 0^{\circ} \mathrm{C} . \\ \mathrm{p} & 3.9 \mathrm{~mm} . \end{array}$	$\begin{gathered} 10 \\ 7.8 \end{gathered}$	$\begin{aligned} & 17 \\ & 12.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 28.2 \end{aligned}$	$\begin{aligned} & 40 \\ & 514 \end{aligned}$	$\begin{aligned} & 60 \\ & 157 \\ & \hline \end{aligned}$	$\begin{aligned} & 80 \\ & .389 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 843 \end{aligned}$	$\begin{aligned} & 120 \\ & 1668 \end{aligned}$	
$\begin{aligned} & \text { Isc-butyl alcohol } \dagger \text {. } \dot{S}^{\prime} \text {; } \\ & \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{OH}\left(\mathrm{Ki} ., \text { ' } 86 ;{ }^{2}\right. \text {) } \end{aligned}$	$\begin{array}{cc} \mathrm{t} & 10^{\circ} \mathrm{C} . \\ \mathrm{p} & 4.1 \mathrm{~mm} . \end{array}$	$\begin{array}{r} 17 \\ 6.8 \end{array}$	$\begin{gathered} 20 \\ 8 \cdot 1 \end{gathered}$	$\begin{aligned} & 40 \\ & 30^{\circ} 3 \end{aligned}$	$\begin{aligned} & 60 \\ & 91^{\prime 2} \end{aligned}$	$\begin{aligned} & 80 \\ & 245 \end{aligned}$	$\begin{array}{r} 100 \\ 569 \end{array}$	$\begin{array}{r} 108 \\ 760 \end{array}$	$\begin{gathered} 120 \\ 1195 \end{gathered}$	
Iso-amyl alcohol \dagger $\mathrm{C}_{5} \mathrm{H}_{14} \mathrm{OH}$ (Ri., ' 86 ; S., '91)	$17^{\circ} \mathrm{C} .$	$\begin{aligned} & 30 \\ & 4 \cdot 68 \end{aligned}$		$\begin{aligned} & 50 \\ & 17.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & 3^{\circ} \mathrm{O} \\ & \hline \end{aligned}$	$\begin{aligned} & 80 \\ & 151 \\ & \hline \end{aligned}$	$\begin{gathered} 100 \\ 234 \\ \hline \end{gathered}$	$\begin{gathered} 120 \\ 522 \end{gathered}$	$\begin{aligned} & 130 \\ & 741 \end{aligned}$	
Formic acid, $\dagger \mathrm{CH}_{2} \mathrm{O}_{2}$ (S., 1891 ; K., 1898)	$\begin{array}{cc} \mathrm{t} & 0 \mathrm{C} . \\ \mathrm{p} & 10^{\circ} 2 \mathrm{~mm} . \end{array}$	$\begin{aligned} & 10 \\ & 18.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 17 \\ & 26 \cdot 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 31 \cdot 6 \\ & \hline \end{aligned}$	$\begin{gathered} 30 \\ 513 \end{gathered}$	$\begin{aligned} & 40 \\ & 79.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \\ & 266 \end{aligned}$	$\begin{aligned} & 80 \\ & 373 \\ & \hline \end{aligned}$	$\begin{aligned} & 101 \\ & 760 \\ & \hline \end{aligned}$	
Acetic acid, $+\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$ (Ra.\& Y. ; Ri.,' 86 ; S., '9r)	$\begin{array}{cc} t & 17^{\circ} \mathrm{C} . \\ \mathrm{p} & 9.8 \mathrm{~mm} . \end{array}$	$\begin{aligned} & 30 \\ & 20.6 \end{aligned}$	$\begin{aligned} & 50 \\ & 56 \cdot 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \\ & 133 \end{aligned}$	$\begin{aligned} & 90 \\ & 288 \end{aligned}$	$\begin{gathered} 1110 \\ 582 \end{gathered}$	$\begin{aligned} & 130 \\ & 10 \leq 8 \end{aligned}$	$\begin{aligned} & 150 \\ & 1847 \end{aligned}$	$\begin{array}{r} 200 \\ 5905 \end{array}$	
$\begin{aligned} & \text { Propionic acid, } \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2} \\ & \text { (Ri., ' } 86 ; \mathrm{S} ., \text {,'91; K.,' } 98 \text {) } \end{aligned}$	$\begin{array}{cc} \mathrm{t} & 15^{\circ} \mathrm{C} . \\ \mathrm{p} & 1.7 \mathrm{~mm} . \end{array}$	${ }^{17}{ }^{2} \mathrm{O}$	${ }_{20}{ }_{20}$	30 40	$\begin{gathered} 40 \\ 9.1 \end{gathered}$	$\begin{aligned} & 60 \\ & 28.2 \end{aligned}$	$\begin{aligned} & 70 \\ & 46 \cdot 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 80 \\ & 745 \\ & \hline \end{aligned}$	$\begin{array}{r} 140 \\ 760 \\ \hline \end{array}$	
$\begin{aligned} & \text { Butyric acid, } \dagger \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}_{2} \\ & \text { (Ra.\&Y.,'86; } \mathrm{S} .9 \mathrm{I} ; \mathrm{K} .9+1 \end{aligned}$	$\begin{aligned} & \mathrm{t} \\ & \mathrm{p} \\ & \hline .52 \mathrm{~cm} . \end{aligned}$	${ }^{20} \cdot 66^{*}$	$\begin{gathered} 30 \\ 1.4 \end{gathered}$	50	$\begin{aligned} & 70 \\ & 16.2 \end{aligned}$	$\begin{aligned} & 90 \\ & 44^{\circ} 9 \end{aligned}$	$\begin{aligned} & 110 \end{aligned}$	$\begin{aligned} & 130 \\ & 245 \end{aligned}$	$\begin{aligned} & 150 \\ & 497 \end{aligned}$	
Iso-butyric acid, $\dagger \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ (R1., '86; S., '91 ; K., '94)	$\begin{gathered} 17^{\circ} \mathrm{C} . \\ \mathrm{p} \cdot 88 \mathrm{~mm} . * \end{gathered}$		$\begin{gathered} 50 \\ S_{2} \end{gathered}$	$\begin{aligned} & 70 \\ & 25^{\prime} \end{aligned}$	$\begin{aligned} & 90 \\ & 67 \cdot 6 \end{aligned}$	$\begin{aligned} & 110 \\ & 162 \end{aligned}$	$\begin{aligned} & 130 \\ & 347 \end{aligned}$	$\begin{aligned} & 150 \\ & 684 \\ & \hline \end{aligned}$	$\begin{gathered} 153.5 \\ 760 \end{gathered}$	
Methyl formate \dagger $\mathrm{CHO}_{2} \mathrm{CH}_{3}$ (Y. \& T., '93).	$\begin{cases}t & -20^{\circ} \mathrm{C} . \\ \mathrm{p} & 67^{\circ} 7 \mathrm{~mm} .\end{cases}$	$\begin{aligned} & -10 \\ & 117.6 \end{aligned}$	0 195	10 309	$\begin{aligned} & 20 \\ & 476 \end{aligned}$	$\begin{array}{r} 40 \\ 1029 \end{array}$	$\begin{gathered} 60 \\ 1990 \end{gathered}$	$\begin{gathered} 80 \\ 3497 \end{gathered}$	$\begin{aligned} & 100 \\ & 5782 \end{aligned}$	
$\begin{aligned} & \text { Methyl butyrate } \dagger \text {, } \\ & \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}_{2} \cdot \mathrm{CH}_{3} \text { (Y. \& } \mathrm{T} \text {., }{ }_{93} \text {) } \end{aligned}$	$\left[\begin{array}{ll} \mathrm{t} & -10^{\circ} \mathrm{C} . \\ \mathrm{p} & 3.55 \mathrm{~mm} . \end{array}\right.$	0 $7 \cdot 3$	$\begin{aligned} & 10 \\ & 13.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 24.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 69.2 \\ & \hline \end{aligned}$	$\begin{gathered} 60 \\ 167.5 \\ \hline \end{gathered}$	$\begin{array}{r} 80 \\ 36 \mathrm{I} \\ \hline \end{array}$	$\begin{aligned} & 100 \\ & 701 \end{aligned}$		
Methyl isobutyrate \dagger $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}_{2} \cdot \mathrm{CH}_{3}$ (Y. \& 'T., ' 93)	$\begin{array}{ll} \mathrm{t} & -10^{\circ} \mathrm{C} \\ \mathrm{p} \\ 6.22 \mathrm{~mm} \end{array}$	$\begin{gathered} 0 \\ 12.15 \\ \hline \end{gathered}$	$\begin{aligned} & 10 \\ & 22.4 \end{aligned}$	$\begin{aligned} & 20 \\ & 38.9 \end{aligned}$	$\begin{gathered} 40 \\ 104.7 \\ \hline \end{gathered}$	60 244	80 505	$\begin{aligned} & 100 \\ & 956 \\ & \hline \end{aligned}$	120	
Ethyl acetate \dagger $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2} . \mathrm{C}_{2} \mathrm{HI}_{5}$ (Y. \& T., '93)	tt p $6.50^{\circ} \mathrm{C}$.	-10 129	$\begin{gathered} 0 \\ 24^{\circ} 3 \end{gathered}$	10 42.7	$\begin{aligned} & 20 \\ & 72 \cdot 8 \\ & \hline \end{aligned}$	$\begin{gathered} 40 \\ 186 \end{gathered}$	60 415	$\begin{array}{r} 80 \\ 833 \\ \hline \end{array}$	$\begin{aligned} & 100 \\ & 1515 \\ & \hline \end{aligned}$	
$\begin{aligned} & \text { Ethyl propionate } \dagger, \\ & \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}, \mathrm{C}_{2} \mathrm{H}_{3}\left(\mathrm{Y} . \& \mathrm{~T} .,{ }_{93}\right) \end{aligned}$	$\begin{aligned} & \mathrm{t} \\ & \mathrm{p},-00^{\circ} \mathrm{C} . \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 8 \cdot 3 \end{aligned}$	$\begin{aligned} & 10 \\ & 15.5 \end{aligned}$	$\begin{aligned} & 20 \\ & 277 \end{aligned}$	$\begin{aligned} & 40 \\ & 77 \cdot 9 \end{aligned}$	$\begin{gathered} 60 \\ 188.0 \end{gathered}$	$\begin{gathered} 80 \\ 403 \cdot 6 \end{gathered}$	$\begin{aligned} & 100 \\ & 785 \end{aligned}$	$\begin{aligned} & 120 \\ & 1388 \end{aligned}$	
Propyl acetate \dagger. $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \cdot \mathrm{C}_{3} \mathrm{H}_{2} \text { (Y. \& T.,' } 93 \text {) }$		0 7 7	${ }_{1} 10$	${ }_{25} 20$	$\begin{aligned} & 40 \\ & 70 \cdot 8 \\ & \hline \end{aligned}$	60 172	80 373	100 724	$\begin{aligned} & 120 \\ & 1288 \end{aligned}$	
Ethyl ether, $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$ (Young, 1910)	$\begin{array}{ll} t & -10^{\circ} \mathrm{C} . \\ p_{1} & 1122^{\prime} 3 \end{array}$	$\begin{gathered} 0 \\ 184^{\circ} 0 \end{gathered}$	$\begin{gathered} 10 \\ 290 \cdot 8 \end{gathered}$	$\begin{aligned} & 20 \\ & 4398 \end{aligned}$	$\begin{gathered} 40 \\ 92 \mathrm{I} \end{gathered}$	$\begin{array}{r} 60 \\ 1734 \end{array}$	$\begin{array}{r} 80 \\ 2974 \end{array}$	$\begin{array}{r} 100 \\ 4855 \end{array}$	$\begin{gathered} 193 \cdot 8 \\| \\ 27,060 \end{gathered}$	

Interpolate logs of vapour pressure as explained on p. 40.

[^5]
GAS THERMOMETRY

The standard thermometric scale of the International Committee of Weights and Measures (1887) is that of the constant-volume hydrogen thermometer, the hydrogen being taken at an initial pressure at 0° C. of 1000 mms , of mercury measured at $0^{\circ} \mathrm{C}$. sea-level and lat. $45^{\circ}(=1.3158$ standard atmosphere).

THERMODYNAMIC TEMPERATURE OF THE ICE-POINT

Method.	H_{2}	N_{2}	Air.	CO_{2}	Computer.
	${ }^{\circ}$	${ }^{\circ}$		\bigcirc	
From Joule-Thomson effect	273.14	$273^{\circ} 09$	-	$273 * 05$	Callendar, 1903
Extrapolation to zero pressure (see p. 54)	$273 \cdot 07$	$273^{\circ} 09$	-		Berthelot and Chappuis, 1907
From Joule-Thomson effect	273.05	(273.17)	273*19	273.10	Berthelot, 1907
"	273.06	273.25	$273{ }^{\circ} 27$	$273 \cdot 12$	Buckingham,1908
" "	$273^{\circ} 13$	273.14		-	Rose-Innes, 1908

General mean $=273^{\circ} \cdot 13$.

THERMODYNAMIC CORRECTIONS TO GAS SCALES OF TEMPERATURE

The corrections to both the constant-pressure (C.P.) and the constant-volume (C.V.) scales are either (1) derived from characteristic equations of state (Callendar, 1903; Berthelot, 1907), or (2) in the case of the C.P. thermometer, computed from the Joule-Thomson effect ; whence from these C.P. corrections and a knowledge of the compressibility of the gas under different conditions the C.V. corrections can be calculated. Chappuis (1907)* has experimentally compared the C.P. and C.V. H . and N. thermometers each with mercury thermometers. The values below are based on computations by Callendar (Phil. Mag., 1903), Berthelot* (from Chappuis' data 1907), Onnes and Braak (1907 and 1908), Rose-Innes (Phil. Mag., 1908), and Buckingham (1908).t There is some divergence among the different computations for hydrogen; the agreement is much better in the case of nitrogen. The thermodynamic correction to the C.V.H. thermometer is negligible, and with nitrogen also at extreme temps. the correction is less than the error of working in modern gas thermometry. The values for air are a little smaller than for nitrogen ; for helium they are slightly larger than for hydrogen except at the lowest temperatures, when the helium corrections are the smaller. New experiments on the JouleThomson effect are needed. $\ddagger(+)$ means that the correction has to be added to the gas scale temperature to give the thermodynamic temperature. The correction is proportional to the initial pressure of the gas in the thermometer.

* Trav. et Mém. Bureau Intl. 1907. + Bull. Bureau of Standards. 1908.
+ See Dalton, Proc. Konink. Akad. Weten. Amsterdam, April, 1909.

$t^{\circ} \mathrm{C}$	Const. Pressure$P=1000 \mathrm{~mm} .$		Const. Volume P at $0^{\circ}=1000 \mathrm{~mm}$.		t° C.	Const. Pressure$P=1000 \mathrm{~mm}$		Const. Volume P at $0^{\circ}=1000 \mathrm{~mm}$.	
	H_{2}	N_{2}	H_{2}	N_{2}		H_{2}	N_{2}	H_{2}	N_{2}
-240 ${ }^{\circ}$	+10.2 (?)	-	${ }^{0} \cdot 18$	-	70°	- ${ }^{\circ} .003$	- 0.019	-0.001	-0.004
-200	+ 26		+.06		80	- 002	- 014	- 000	-.003
-150	+ 10	$+1^{0} 3$	+.033	+0.26 (?)	90	- 001	$-.007$	- 000	-.002
100 -100	+ 04 $+\quad 02$	+ $+\quad 40$ $+\quad 12$	+ 010 +.005	+ +10 (?	100	0	0	0 $+\quad 004$	-
- 50	$+0^{02}$	$+\quad 12$ 0	$+\quad 005$ +0	+ 03 0	200 300	+.014 $+\quad 034$	+ 12 $+\quad .28$	+.004 +.011	$\begin{array}{r}\text { a } \\ +\quad 04 \\ +\quad 10 \\ \hline\end{array}$
10	- 0001	- 0009	- 000	-.002	400	+.034 +.07 (?)	+ $+\quad .28$ $+\quad$.	+ 011 +018 (?)	$\begin{array}{r}\text { a } \\ +\quad 10 \\ +\quad 17 \\ \hline\end{array}$
20	- 002	- 017	- 000	-.004	450	+ 090 (?)	+ 56	+ 022 (?)	+ 19 $+\quad 10$
30	-.003	- 021	- 0001	-.005	600		+ 87 +8.8		+ 3
40	-.003	- 023	- 0001	-.006	800		+13		+ 5
50	.003	- .024	- ${ }^{\text {- }}$ OI	- 007	1000	-	+18	-	+ 7
60	- .003	- 022	-001	- 006	1200	-	$+2 \cdot 3$		+1.0

MERCURY THERMOMETRY

CORRECTIONS TO REDUCE MERCURY-IN-GLASS SCALE TEMPS. TO GAS SCALE TEMPS.

The values for the English Kew glass (which is a lead potash silicate) are due to Harker (1906) ; the verre dur corrections are given by the International Bureau; those for the Jena glasses by Grützmacher. The method at Kew is to determine the ice-point correction before an observation is made. The other glasses have their ice-point or zero depressions determined immediately after each temperature reading. See Guillaume's "Thermométrie de Précision." Paris, 1889, and Chree's "Notes on Thermometry," Phil. Mag., 1898. The French glass, verre dur, is used by Tonnelot of Paris. The normal glass, Jena $16^{\prime \prime \prime \prime}$, may be known by the presence of a thin violet line near the surface. Jena $59^{\prime \prime \prime}$ is a borosilicate (p. 74).

Temp.	Kew Glass.	Verre Dur.	Jena 16"'.	Jena 59'1.	Temp.	Verre Dar.	Jena 16".	Jena 59 ${ }^{\prime \prime \prime}$
	$t_{\mathrm{H}}-t_{\text {K,G. }}$	$t_{\mathrm{H}}-t_{\mathrm{v}, \mathrm{D}}$.		$t_{\text {H }}-t_{59}{ }^{\prime \prime \prime}$		$t_{\mathrm{N}}-t_{\mathrm{V}, \mathrm{D} .}$	$t_{N}-t_{16}{ }^{\prime \prime \prime}$	$t_{\mathrm{N}}-t_{59}{ }^{\prime \prime \prime}$
-20 0	0	${ }_{+}^{+17}$	${ }_{+}^{+}$	+ ${ }^{+}$	110° 120	+ 04 +.06	+0.03 $+\quad 05$	- 000 $-\quad 02$
10	-00	-. 05	-.05	-.02	130	$+\quad 06$ $+\quad 07$	+ + +07	-
20	-00	- 0 os	- 09	- 04	140	+ 07	+ 09	- 08
30 40	+ +005 +001	a -10 $-\quad 11$	- 11 -.12	- 04 $=-04$	150	+.06 $+\quad .03$	$+\quad 10$ $+\quad 10$	- 13
40	+01 +01	- 11 $-\quad 10$	[-12 $-\quad 11$	$\begin{array}{r}\text { - } 04 \\ -\quad 03 \\ \hline\end{array}$	160 170	+ ${ }_{0}{ }^{0}$	+ $+\quad .08$ $+\quad .08$	a $-\quad 19$ $-\quad 28$
60	+or +01	- 10 $-\quad 09$	[11	- 03	180	$\begin{array}{r}0 \\ -\quad 04 \\ \hline\end{array}$	+.08 +.06	
70	+.015	- 07	- - 0 S	- 01	190	- 09	+ 02	-. 52
80	+.02	-.05	- 06	-00	200	- 13	-. 04	-. 67
90 100	+0025	-03	$-{ }_{0}^{03}$	0_{0}^{00}	250 300	-	r $-\quad 63$ $-\quad .91$	-1.7 -4.1
								-4^{1}

DEPRESSION OF ZERO OF MERJURY THERMOMETERS
The values indicate the zero depressions after the thermometer has been heated to the temp. stated. They have been determined by Guillaume, Thiesen, Schloesser, and Böttcher because of the impossibility in practice of interrupting a series of temperature measurements to take a number of zero readings (see above).

Temp.	Verre Dur.	Jena 16"'.	Jena 59'ı.	Temp.	Verre Dur.	Jena 16"'.	Jena 59 ${ }^{\prime \prime \prime}$.
$10^{\circ} \mathrm{C}$.	- 008	0.005	0.005	$60^{\circ} \mathrm{C}$.	0.060	- 039	c. 024
20	-017	-011	-009	70	-071	-048	-027
30	-027	-017	-014	80	-08t	-057	-030
40	-037	-024	.017	90	$\cdot 097$	-066	-033
50	- 048	. 031	. 021	100	- 111	$\cdot 077$	-035

STEM-EXPOSURE OR EMERGENT-COLUMN CORRECTION
The table below gives the (additive) "stem-exposure" correction for (I) the ordinary solid-stem thermometer, and (2) the German pattern sleeve-thermometer, which has a fine capillary in an outer glass tube. Both thermometers are of Jena $16^{\prime \prime \prime}$ glass, with degree intervals about I mm. long.
t is the indicated temperature, and taux the temperature of an auxiliary thermometer whose bulb is 10 cms . from and on a level with the mid-point of the eyposed stem. The auxiliary thermometer must be shielded from the source of heat. (See Watson's "Practical Physics," and Rimbach, Zeit. f. Inst., 10, 1890.)

No. of degree divs. of exposed thread.	Solid Stem; Scale on Stem.						Sle eve Thermometer; Enclosed Scale.						No, of degree divs. of exposed thread.
	$t-t_{\text {aux }}$												
	$70^{\circ} \mathrm{C}$	80°	100°	120°	140°	180°	$70^{\circ} \mathrm{C}$	80°	100°	120°	140°	180°	
10	${ }^{\circ} \mathrm{O} .02$	${ }^{\circ} \mathrm{O} 3$	-07	${ }^{0} .11$	${ }^{0} 17$	${ }^{\circ} \cdot 27$	0.01	0.01	${ }^{\circ} \mathrm{O} 4$	07	${ }^{0} 10$	${ }^{0} 17$	10
20	13	- 15	- 22	- 29	-38	- 53	- 0	-12	-19	$\cdot 25$	- 2 S	40	20
30	- 24	- 25	$\cdot 39$	48	$\cdot 59$	$\cdot 78$	- 25	- 28	$\cdot 36$	$\cdot 42$	48	-66	30
40	- 35	41	- 56	-68	. 82	104	-30	$\cdot 35$	48	-60	. 67	$\cdot 92$	40
60	- 57	- 66	-89	I.09	1.25	1.58	- 52	-60	- 79	:99	I•II	1.46	60
80	-80	$\cdot 91$	$1 \cdot 21$	152	1.71	2.15	$\cdot 75$	-87	I. 15	1.38	1.53	1.98	80
100	1.02	$1 \cdot 18$	1.56	1.97	$2 \cdot 18$	$2 \cdot 70$	98	1-12	1.47	1.82	2.03	$2 \cdot 55$	100
120		-	1.98	2.43	$2 \cdot 69$	$3 \cdot 26$		-	1.88	$2 \cdot 28$	2.49	$3 \cdot 13$	120

46
 ELECTRICAL THERMOMETRY

PLATINUM THERMOMETRY

TO REDUCE PT-SCALE TEMPS. ($\left.t_{p}\right)$ TO CONST. VOL. N-SCALE TEMPS. (t)
Callendar's "difference formula" for the difference between the nitrogen-scale temp. (t) and the Pt-scale temp. ($t_{p t}$) is $t-t_{p t}=\delta \cdot t(t-100) \mathrm{IO}^{-1}$, where δ is close to 15. Pt-scale temps. result from assuming a linear relation $\mathrm{R}_{p t}=\mathrm{R}_{\mathrm{0}}\left(\mathrm{I}+a t_{p t}\right)$ between temp. and the electrical resistance (R) of $\mathrm{Pt} ; \alpha$ is the mean coefficient for the range 0° to 100°. The "difference formula" gives the correction yielded by the truer parabolic relation $\mathrm{R}_{t}=\mathrm{R}_{0}\left(1+\alpha t+\beta t^{2}\right)$. Pt thermometers should not be used above 1200° C. (See Callendar, Phil. Mag., 1899, 1, p. 191; 2, p. 519. Camb. Sci. Inst. Co.'s list "Technical Thermometry;" and (for bibliography), Waidner and Burgess, Bull. Bur. of Standards, 1909.)

$$
\delta=1 \cdot 50
$$

(Harker, Phil. Trans., 1904.)

Pt Temps. $t_{p t}$.	0	20	40	60	80	100	120	140	160	180
	t		${ }_{\text {c }}^{\text {t }}$ +	${ }_{-1}{ }^{\text {c }}$	$6^{0.2}$				t	
- 0	$0{ }^{\circ}$	$-177^{\circ}{ }^{\circ} 9$ 19	$-154 \cdot 1$ $39 \cdot 6$	-135.2 59.64	$-116^{\circ} \cdot 2$ 79.76	$\underline{-97} 10$		$140 \cdot 9$	161.5	182.3
$+200$	203.1	224.2	2454	$265 \cdot 7$	$2 S 5 \cdot 1$	$309 \cdot 8$	3315	353.4	$375 \cdot 5$	3978
400	$420 \cdot 2$	$442 \cdot 8$	465.5	488.5	5156	534.9	558.4	582.1	606.0	$630 \cdot 1$
600	654.4	$679{ }^{\circ}$	703.7	728.7	754°	779.4	805.2	$831^{\circ} 2$	8574	$88^{\circ} \mathrm{O}$
800	$910 \cdot 8$	$937{ }^{\circ} 9$	$965 \cdot 3$	$993{ }^{\circ}$	1021	1050	1078	1107	1137	1167
1000	1197	1228	1259	1290	1323	1355				

TO CALCULATE THE CHANGE Δt IN THE N-SCALE TEMP. (t) FOR A CHANGE OF +01 IN δ

t	Δt										
-200°	c. 060	-60°	- 0.010	80°	-0.002	250°	-. 038	600°	${ }^{\circ} \cdot 30$	$950{ }^{\circ}$	0.8
-180	. 050	-40	-006	100	0	300	-060	650	- 36	1000	-9
-160	. 042	-20	.002	120	. 002	350	-088	700	42	1050	1.0
-140	-034	0	0	140	.006	400	-120	750	-49	1100	$1 \cdot 1$
-120	-026	20	-. 002	460	- 010	450	-158	800	-56	1150	$1 \cdot 2$
-100	-020	40	-.002	180	-14	500	- 20	850	-64	1200	$1 \cdot 3$
- -80	. 014	60	-.002	200	- 020	550	- 25	800	$\cdot 72$	1250	14

HIGH TEMPERATURES

(See Burgess and Le Chateliers "High Temperature Measurements, 1912.")
For the neasurement of high temperatures (say above $1200^{\circ} \mathrm{C}$., which is about the present upper experimental limit of the gas scale) the instruments in general use are thermo-junctions and optical or radiation pyrometers. Both involve extrapolation. Thermo-couples have been used up to the temperature of the meltingpoint of platinum $\left(c .1750^{\circ}\right)$. At high temperatures thermo-junctions yield rather lower results than do optical pyrometers, c.g. see the M.P.'s of P.d and P' on p. 49.

THERMO-ELECTRIC THERMOMETRY

Temperature readings with thermo-couples are redaçed by one of the formula: : $(a) \mathrm{E}=a+b t+c t^{2}$, (b) $\mathrm{E}=m t^{n}$, or $\log \mathrm{E}=n \log t+m^{\prime}, \mathrm{E}$ Leing the e.m.f. generated, and t the temperature of the hot junction, the cold junction being at 0°. Up to about 1200° these formulæ with suitable constants agree to within 2° for the usual $10 \%(\mathrm{Pt}, \mathrm{Pt}-\mathrm{Rh})$ and ($\mathrm{Pt}, \mathrm{Pt}-\mathrm{Ir}$) couples, but above 1200° formula (b) yields the higher results, e.g. see the melting-points of Pd and Pt on p. 49. The thermo-e.m.f.'s of these Pt couples gradually diminish with prolonged heating. The values of the constants below are only average values,

E IN MICRO VOLTS (10^{-6} VOLT)

	Couple.	a	6	c	n	m^{\prime}
Cold	Pt and (90 Pt , 10 Rh)	-307^{*}	8.1*	-0017*	$1 \cdot 19$	$\bigcirc 2$
junc-	Pt and (90 Pt , 10 Ir)	$-550 *$	14.8 *	-0016*	$1 \cdot 10$. 89
tion	Cu and Constantan \dagger	-	-	-018	$1 \cdot 14$	1-34
at $0^{\circ} \mathrm{C}$.	Cu and Fe . . .	0	10.34	-0183	.	

[^6]
THERMO-ELECTRIC THERMOMETRY (contd.)

The following are the readings in 19^{-5} volt determined at the National Physical Laboratory for a Pt-Rh and a Pt-Ir couple, each having the cold junction at $\mathrm{O}^{\circ} \mathrm{C}$. The values only hold for the particular couples.

Couple.	Temp.	0	50	1 CO	150	200	250	300	350	400	450
Pt	$0^{\circ} \mathrm{C}$.	\bigcirc	23	51	83	119	158	199	242	286	331
and	500	377	423	470	518	567	617	668	720	773	826
(90 Pt , 10 Rh)	1000	880	935	991	1048	1106	116;	1225	1286	1348	
Pt	0	\bigcirc	58	125	195	268	343	420	498	577	657
ard	5 CO	737	818	899	98 I	1064	1147	1231	1315	1400	1485
(90 Pt, 10 Ir)	1000	1571	1657	1744	1831	1919	2007	2096	2185	2275	

THERMO-E.M.F.'S ACAINST PLATINUM IN MICRO VOLTS (10.6 VOLT)
One junction at $0^{\circ} \mathrm{C}$. The current flows across the other junction from the metal with the (algebraically) smaller value to the other metal. (See Watson's "Physics" and Henning in L.B.M.)

Metal.	-190°	$+100^{\circ}$	Metal.	-190°	$+100$	Metal.	-190°	+160
Aluminium	+ 390	$+380$	Lead.	$+210$	$+410$	Tantalum		+ 330
Antimony		+4;00	Magne-			Tin	+200	+ 410
Bismuth	$+12300$	-6500	sium .	$+330$	$+410$	Zinc.	-120	$+750$
Cadmium		+ 900	Mercury			13rass. -		c. +400
Cobalt.		-1520	Nickel.	+2220	-1640	Constantan*		-3140
Copper:	2 Co	+740	Palla-			German sil-		
Gold Iron.	120 2900	+730 +1600	dium		- 560 $+\quad 710$	vert. ${ }_{\text {Manganin }} \ddagger$		$\begin{array}{r} -1000 \\ +\quad 570 \end{array}$

* Eureka, $60 \mathrm{Cu}, 40 \mathrm{Ni}$.
$+60 \mathrm{Cu}, 15 \mathrm{Ni}, 25 \mathrm{Zn}$.
$\ddagger 84 \mathrm{Cu}, 4 \mathrm{Ni}, 12 \mathrm{Mn}$.

RADIATION AND OPTICAL THERMOMETRY

Most radiation thermometers depend upon either (1) the Stefan-Boltzmann law, $\mathrm{E}=\mathrm{K}\left(\theta^{4}-\theta_{0}{ }^{4}\right)$, where E is the total energy (all wave-lengths) radiated per sec. by a black body at absolute temp. θ to surroundings at absoite temp. θ_{0}, and K is a const. ($K=5.7 \times 10^{-12}$ watts per $\mathrm{cm} . .^{2}$ per $1^{\circ}-\sec \mathrm{p}, 65$) ; or (2) Wien's equation connecting the temperature with the intensity of scme particular wave-length of light
emitted (p. 65). The Wien equation is, Intensity $I=c_{1} \lambda-{ }^{-5} e^{-\frac{c_{2}}{\lambda T}}$, where λ is the wave-length, T is the "black body" temp. on the absolute scale, c_{1} and c_{2} are constants, and e is the base of the Napierian logarithms. Both equations give results which agree very accurately with the gas scale over the calibrated range 0° to $1200^{\circ} \mathrm{C}$. Up to about 1500° radiation thermometers are, in practice, almost always graduated empirically, usually against a thermo-couple.

The "black body" temperature of a radiating substance is the temperature at which an ideal black body would emit radiation of the same intensity as that from the substance, the radiation considered being of some particular wave-length. A perfectly black body absorbs all the radiation which falls upon it; it is destitute of reflecting power. Coal, carbon, metals which when heated tarnish with a black oxide, enclosed furnaces and muffles at a uniform temperature, all conform very nearly to this definition. When a pyrometer is sighted upon a body which is not "black," the temperature recorded-the "black body" temperature-will be lower than the true temperature to an extent which increases with the refl.cting power of the body, c.g. if platinum and carbon have equal "black body" temperatures, their actual temperatures may differ by 180° or so at 1500°.

TEMPERATURE AND COLOUR OF FIRE

| Appearance . | Red-just
 visible. | Dull Red. | Cherry Red. | Orange. | White. | Dazzling
 White. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Temperature. | c. $500^{\circ} \mathrm{C}$. | $c .700^{\circ}$ | c. 900° | c. 1100° | c. 1300° | c. 1500° |

For standard temperatures for thermometer calibration, see p. 50.

48

MELTING AND BOILING POINTS OF THE ELEMENTS

For an account of temperature measurements, sec p. 46. For melting and boiling points of chemical compounds, see p. 109; of fats and waxes, see p. 50.

Element.	Melting Point.	Observer.	Boiling Point at 760 mms .	Observer.
Aluminium .	$657^{\circ} \mathrm{C}$.	Holborn and Day, 1900	$1800^{\circ} \mathrm{C}$.	Greenwood, 1909
Antimony .	-630		1440 -186	Greenwood, 1909
Argon .	-18S	Ramsay and Travers, 1901	$\begin{gathered} -186 \\ \text { sublimes } \end{gathered}$	-
Arsenic	volatilizes		$\left.\begin{array}{c} \text { sublimes } \\ 450 \end{array}\right\}$	-
Barium	850	Guntz, 1903	-	
Beryllium Bismuth.	c. 1430	Just and Mayer, 1909 Callendar 1899		
Bismuth . Boron .	269	Callendar, 1899	$\begin{gathered} 1420 \\ \text { (sublimes } \end{gathered}$	Greenwood, 1909
Boron	2000 to 2500	Weintraub, 1909	$\left\{\begin{array}{c} \text { sublimes } \\ 3500 \end{array}\right\}$	
Bromine	$-7 \cdot 3$	van der Plaats, 1886	63	van der Plaats, 1886
Cadmium	321	Holborn and Day, 1900	778	D. Berthelot, 1902
Cæsium .	26.4	Eckardt and Graefe, 1900	670	Ruff \& Johannsen, 1906
Calcium	780	Ruff and Plato, 1903		
Carbon	4000 (?)	(Calculated) McCrae, 1906	-	
Cerium	623	Muthmann \& Weiss, 1904		
Chlorine.	-102	- Olszewski	$-33 \cdot 6$	Regnault, 1863
Chromium	1520	Bureau of Standards	2200	Greenwood, 1909
Cobalt	1480	Bureau of Standards		
Copper	1084^{*} 1083	Holborn and Day, 1900 Day and Sosman, 1910	2310	Greenwood, 1909
Erbium				
Fluorine	223	Moissan and Dewar, 1903	-187	Moissan \& Dewar, 1903
Gallium,	$30^{\circ} 2$	L. de Boisbaudran, 1876		
Germanium		Biltz, 1911 Holborn and Day, 1901		
Gold	$\begin{aligned} & 1063 \\ & 1062 \dagger \end{aligned}$	$\left.\begin{array}{l}\text { Holborn and Day, } 1901 \\ \text { Day and Sosman, } 1910\end{array}\right\}$	2530 (?)	
Helium	below-272	Onnes, 1911	-268:8	Onnes, 1911
Hydrogen	-259	Travers, 1902	$-252 \cdot 7$	Travers, 1902
Indium	155	Thiel, 1904	1000 (?)	
Iodine	113	Lean \& Whatmough, 1808	$18+4$	Drugmann \& Ramsay, 'co
Iridium	2290	Mendenhall \& Ingersoll,'07	2550 (3)	
Iron	1530	Bureau of Standards	2450	Greenwood, 1909
Krypton.	-169	Ramsay, 1903	-1517	Ramsay, 1903
Lanthanum	810	Muthmann \& Weiss, 1904		
Lead.	327	Holborn and Day, 1900	1525	Grcenwood, 1907
Lithium	186	Kahlbaum, 1900	>1400	uff \& Johannsen, 1906
Magnesium	633	Heycock and Neville, 1895	1120	Greenwood, 1909
Manganese	1260	Bureau of Standards	1900	Greenwood, 1909
Mercury	-38.80	Chappuis, 1900	$356 \cdot 7$	Callendar, 1899
Molybdenum	2450	Pirani \& Meyer, 1912	3200 (?)	-
Neodymium	840	Muthmann \& Weiss, 1904	-	- -
Neon -			-239	Dewar, 1901
Nickel	$1452+$	Day and Sosman, 1910	2330 (?)	
Niobium	1950	von Bolton, 1907		
Nitrogen	-2105	Fischer and Alt, 1903	-195'7	Fischer \& Alt, 1903

MELTING AND BOILING POINTS OF THE ELEMENTS (contd.)

\begin{tabular}{|c|c|c|c|c|}
\hline Element. \& Melting Point. \& Observer. \& \begin{tabular}{l}
Boiling \\
Point at \\
\(76) \mathrm{mms}\).
\end{tabular} \& Observer. \\
\hline Osmium . \& \(2700^{\circ} \mathrm{C}\). \& \& \& \\
\hline Oxygen
Palladium \& -219
1549

+ \& Dewar, 1911 \& -1820.9 ${ }_{2540} \mathrm{C}$. \& Travers, 1902

\hline $$
\begin{aligned}
& \text { Palladium } \\
& \text { thermo-jn. }(a)
\end{aligned}
$$ \& ${ }_{1535}^{1549}$ \& Day and Sosman, I910 Holborn \& Henning, 1905 \& 2540 \&

\hline optical therm. \& | 1549 |
| :--- |
| 1545 | \& Nernst" \& Wartenberg, 1906 \& \&

\hline \& 1582 \& Holborn \& Valentiner, 1907 \& \&

\hline thermo-jn. (a)
(b) \& 1530 \& Waidner \& Burgess, 1907 \& - \&

\hline optical therm. \& 1543 \& \% \& \&

\hline optical therm.
Phosphorus

Plo \& $$
\begin{gathered}
1546 \\
44 \cdot \mathrm{I}_{760}
\end{gathered}
$$ \& Hulett, 1899 \& 287 \& Schrötter, 1848

\hline Platinum *--
thermo-jn. (a) \& \& \& \&

\hline thermo-jn. (a) \& 1710

1710 \& | Harker, 1905 |
| :--- |
| Holborn \& Henning, 1905 | \& 2450 (?) \&

\hline optical therm. \& 1729 \& Holborn \& Henning, 1905 \& 三 \&

\hline \square \& 1750 \& Nernst \& W artenberg, 1906 \& \&

\hline th \& 1789 \& Holborn \& Valentiner, 1907 \& \&

\hline , (b) \& 1731 \& \& - \&

\hline optical therm.
Potassium . \& 1770 \& Holt ${ }^{\text {\% }} 1909$ \& \&

\hline Potassium \& 62.5 \& Holt and Sims, 1894 \& 758 \& Ruff \& Johannsen, 1905

\hline Praseodymit \& 940
700 \& Muthmann and Weiss,1904 \& \&

\hline Rhodium \& 1907 \& Mendenhall \& Ingersoll,'07 \& 2500 (?) \&

\hline Rubidium \& 38.5 \& Erdmañ and Köthner, 1896 \& \& Ruff \& Johannsen, 1905

\hline Ruthenium \& 1900 (?) \& \& 2520 (?) \&

\hline Samarium \& 1350 \& \& 600 \&

\hline Selenium
Silicon \& 217 \& Saunders, 1900 \& 690 3500 (?) \& Berthelot, 1902

\hline Silicon
Silver \& 1200 (?) \& \& \&

\hline Silver \& $$
\begin{aligned}
& 962 \dagger \\
& 960 \ddagger
\end{aligned}
$$ \& Holborn S Day, 1910 \& 1955 \& Greenwood, 1909

\hline Sodium \& 97° \& Kurnakow \& Puschin,1902 \& 877
742 \& Ruff \& Johannsen, 1975 Permann, 1889

\hline \& , \& \& $$
\int\binom{444.55}{\text { c.p. air }}
$$ \& Eumorfopoulos, 1908 (corrected, 1909)

\hline Sulphur \& rhombic 119 \& \& $$
\left(\begin{array}{l}
444.7 \\
\text { c.v. N }
\end{array}\right.
$$ \& Chappuis \& Harker, 1902

\hline \& monoclinic \& \& $$
\left(\begin{array}{l}
44.53 \\
\text { (c.p. N })
\end{array}\right.
$$ \& Callendar, 1899

\hline Tantalum \& 2910 \& Burges5, 1907 \& \&

\hline Tellurium \& 450 \& Matthey, 1901 \& 1390 \& Deville and Troost, 1880

\hline Thallium \& 301 \& Kurnakow \& Puschin, 1901 \& 1280 (?) \& Wartenberg, 1907

\hline Thorium \& 1690 \& Wartenberg, 1909 \& - \&

\hline Tin ${ }_{\text {Titanium }}$ \& 232
1800 \& Heycock \& Neville, 1895 \& 2270 \& Greenwood, 1909

\hline Titanium:
Tungsten \& 1800 \& \& - \&

\hline Tungsten \& 3500
1720 \& Gen. Elect. Co. Lab. \& 3700 (?) \&

\hline Xenon \& -140 \& Ramsay, 1903 \& -109 \& Ramsay, 1903

\hline Zinc \& $$
418 \ddagger
$$ \& Day and Sosman, 1910 \& 918 \& Berthelot, 1902

\hline Zirconium \& $$
\text { c. } 2300
$$ \& \& \&

\hline
\end{tabular}

[^7]
STANDARD TEMPERATURES

Melting and boiling points of elements will be found on p. 48 ; of chemical compounds, on p. 10).
B.P. $=$ boiling point at $760 \mathrm{~mm} . ;$ M.P. $=$ melting point $;$ T.P. $=$ transition point.

Substanie.		Temp.	Substance.		Temp.
Hydrogen	B.P.	0 -253 -2.	Zinc*		${ }^{\circ} \mathrm{C}$. 419.4
Oxygen	13.P.	-183	Sulphur*	B. P.	$4+1 \times 7$
Carbon dioxide	B. P.	- 78.2	Aluminium	M.P.	657
Mercury	M.P.	- 38.8	NaCl (Harker).	M.P.	801
Water	M. P.	-	$\mathrm{K}_{2} \mathrm{SO}_{4}$. . .	M.P.	1070
$\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$	T.P.	32.383	Palladium (p. 49)	M.P.	1550
Water * *	B.P.	100		M.P.	
Naphthalene*	B.P.	218.0	Tin (Greenwood)	B.P.	2270
Tin* .	M.P.	$231{ }^{\circ} 9$	Arc \dagger (W. \& B. $) \ddagger$.	B.	$37 \mathrm{co} \mathrm{abs}$.
Benzophenone*	I3.P.	3060	Arc \dagger (Harker, 'o8) \ddagger	-	3620 abs.
Cadmium* .	M.P.	3210	Sun \dagger (p.66) .		5800 abs.

* Const. vol. N. scale, Waidner \& Burgess, 19 II ; IV. \& B., Waidner \& Burgess, 1904. \dagger Black body temperature.
\ddagger Positive crater.

EFFECT OF PRESSURE ON BOILING POINTS

$\delta \phi / \delta t$ is given as mm . Hg per degree C. for pressures not very far removed from 760 mm .

The boiling point in absolute degrees C. of a substance under $760 \mathrm{~mm} .=t$ $+c(760-p)(t+273)$, where c is a constant for the substance, and t is the B.P. in degrees C. at the pressure $p \mathrm{~mm}$. The constant c is the same for chemically similar substances.
(See Young, "Fractional Distillation.")

Substanoe.	$\delta p / \delta t_{1}$	c	Substance.	$\delta p / \delta t$	c	Substance.	$\delta p / \delta t$	${ }^{\circ}$
Hydrogen	200	$\times 10^{-4}$	CCl_{4}		$\begin{array}{\|c} \times 10^{-} \\ 123 \end{array}$	Benzene	23.5	$\begin{array}{\|} \times 10^{-} \\ 121 \end{array}$
Oxygen .	77	146	Pentane, n	25.8	125	Toluene .	21.7	120
Carbon dioxide	55		Alcohol, methyl	. $29^{\circ} 6$	100	Aniline	19.6	112
Water	27.2	99	" ethyl.	$30^{\circ} 3$	94	Naphthalene	17.1	119
Mercury	13.6	118	amyl .	25	98	Benzophenone	15.8	109
Sulphur*	$\mathrm{I}^{\circ} \mathrm{O}$	114	Ether, ethyl	26.9	121	Acetone.	26.4	115

$$
* t_{p}=t_{i \theta 0}+0904(p-760)-0,52(p-760)^{2}, \text { Harker \& Sexton, } 1908 .
$$

MELTING, FREEZING, AND BOILING POINTS OF FATS AND WAXES

At 760 mm . pressure.

Substance.	M P.	F.P.	Substance.	M.P.	F.P.	Substance.	M.P.	B.P.
Butter	$\begin{gathered} { }^{\circ} \mathrm{C} \\ 28-33 \end{gathered}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ 20-23 \end{gathered}$	Beeswax	${ }^{\circ} \mathrm{C}-6$	$\begin{gathered} \circ \\ 60-63 \end{gathered}$	Paraffin wax,	${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \mathrm{C}$.
Lard	36-40	27-30	Spermaceti .	42-49	42-47	Soft .	38-52	350-390
	$40-45$	27-35	Stearin .		70		52-56	390-430
" mutton	$44-45$	$36-41$	Naphthalene	80°	-	Olive oil		c. 300

THERMAL CONDUCTIVITIES

The thermal conductivity, k, is given below as the number of (gram) calories conducted per sq. cm . per sec. across a slab of the substance 1 cm . thick, having a temp.-gradient of $I^{\circ} \mathrm{C}$. per cm ., i.e. calorie $\mathrm{cm} .^{-1}$ sec. ${ }^{-1}$ temp. ${ }^{-1}$. (See Callendar, "Conduction of Heat," Eincyc. Brit., and Winkelmann's "Handbuch der Physik.," III., 1906.)

METALS AND ALLOYS

k for most pure metals decreases with rise of temperature ; the reverse appears to be true for alloys. If $\boldsymbol{\varepsilon}$ be the electrical conductivity and θ the absolute temp., then $k /(\kappa \theta)$ is very approximately a constant for pure metals. (See J. J. Thomson, "Corpuscular Theory of Matter," and Lees, Phil. Trans., 1908.) The electrical conductivity of the same specimen of many of the substances below will be found on p . 8 I .

Substance.	Temp.	Cond.k.	Observer.	Substance.	Temp.	Cond.k.	Observer.
Metals - Aluminium *	${ }^{\circ} \mathrm{C}$.			Mercury		-0148	H. F. Weber,'79
	-160	514	Lees,		50	-0189	
	18	- 504	YP.T, '08		50	- 0177	A., 1864
		480	J. \& D.,		17	- 0197	R.W.,'02
	100	-492	1900	Nickel . . ${ }^{\circ}$	-160	$\cdot 129$	Lees, '08
Antimony	100	-44 $\cdot 040$	$\}^{\text {Lorenz, }} 1881$	" $\quad\left\{\begin{array}{c}97 \% \\ \mathrm{Ni}\end{array}\right\}$	$\begin{array}{r} 18 \\ 100 \end{array}$	-142	J. \& D.,
Bismuth	-186	-025	M., 1907	Palladium. .	18	-168	JJ. \& D.,
"	18	- 0194	J. \& D.,		100	-182	
	100	-0161) 1900	Platinum	18	-166	J. \& D.,
Cadmium, pure	-160	- 239	Lees, 'o8		100	-173	1900
" .	18	- 222	J. \& D.,	Silver, pure	-160	-998	Lees,
	100	- 216	1900	"	18	-974	1908
Copper, pure .	-160	$1 \cdot 079$	Lees, ${ }^{\text {d }}$	"	18	1.006	J. \& D.,
	18	918	J. \& D.,		100	'992	
	100	-908	1900	Tin,	-160	-192	Lees, '08
Gold	18	:700	J. \& D.,		18	-155	J. \& D.,
Iron, pure	18	-161	jJ. \& D.,	Tüngsten	18	35	Coolidge
	100	-151) 1900	Zinc, pure	-160	- 278	Lees, 'o8
" wrought	-160	-152	Lees, '08	",	18	-265	J. \& D.,
" \quad t	18	- 144	J. \& D.,		100	$\cdot 262$	19
" $\quad{ }^{\dagger}$	100	- 143	1900				
" ca	54	- 114	Callendar	All			
	102	-149	Hall	Brass	-160	81	Lees
", steel	-160	-113	Lees,		17	-260	1908
", ${ }^{\text {C. }}$. $\}$	18	-15	1908	Constantan	18	054	J. \& D.,
	18	-108	U. \& D.,	(Eureka)4\}	100	-064	1900
	100	-107	f 1900	German silver	0	- 070	Lorenz,
Lead, pure	-160	-092	Lees, 'o8		100 -160	-089	$\begin{aligned} & \text { I88ı } \\ & \text { Lees, 'o8 } \end{aligned}$
	$\begin{array}{r} 18 \\ 100 \end{array}$.083 .082	J. \& D.,	Manganin **.	-160	035	Lees, 'o8 J. \& D.,
Magnesium	$\begin{aligned} & 100 \\ & 0 \text { to } \end{aligned}$	-082	$\left\{\begin{array}{l} 1900 \\ \text { Lorenz, } \end{array}\right.$		18	$\begin{array}{r} 053 \\ .063 \end{array}$	$\}^{J . \& D} \begin{aligned} & \text { \& } \\ & 1900 \end{aligned}$
Magnesium	100	\} 376 \{	Lorenz, I88	Platinoid	18	$\begin{array}{r} 003 \\ .060 \end{array}$	Lees, '08

* $99 \% \mathrm{Al} . \quad+\cdot 1 \% \mathrm{C}, \cdot 2 \% \mathrm{Si}, \cdot \mathbf{1} \% \mathrm{Mn}$. $\quad \ddagger 2 \% \mathrm{C} ., 3 \% \mathrm{Si}, \mathrm{x} \% \mathrm{Mn}$.
§ $3.5 \% \mathrm{C}, 14 \% \mathrm{Si}, \cdot 5 \% \mathrm{Mn}$. $60 \mathrm{Cu}, 40 \mathrm{Ni}$.
** $84 \mathrm{Cu}, 4 \mathrm{Ni}, 12 \mathrm{Mn}$.
A., Ångström ; J. \& D., Jaeger \& Diesselhorst ; M., Macchia ; R. W., R. Weber ; P.T., Phil. Trans.

MISCELLANEOUS SUBSTANCES

The values below are mostly at ordinary temperatures. They must be regarded as rough average values in the case of indifferent conductors. Nearly all liquids have very approximately the same conductivity, which in most cases appears to increase with temperature.

Substance.		Substance.	k	Substance.	k	Substance	k	
Glass -	$\times 10^{-3}$	Cotton wool .	$\begin{aligned} & \times 10^{-3} \\ & 04 \end{aligned}$	Quartz, \perp axis	$\times 10^{-3}$ $16, \mathrm{~L}$.		10	
Crown ; window	2.5, L.	Cork, Earth's crust \dagger	-13, L.	Rubber, Para	-45, L.	$\text { Alcohol, } 25^{\circ}$	4×3 L.	
Flint . . .	$\begin{aligned} & \text { 2, L. } \\ & \mathrm{I}-2, \mathrm{~L} . \\ & \mathrm{I} \cdot 3-1 \cdot 8 \end{aligned}$		Earth's crust \dagger	Sand Sawdust	-13	Aniline, 12° :		
			-42, L.		\cdots	Glycerine, 25°		
Soda			$\circ 9$	Silicate cotton	$\cdot 19$	Paraffin oil, 17°		
		Felt Flannel Gas carbon	$\begin{gathered} 23, L . \\ 10 \end{gathered}$	Silk . Slate	$\begin{gathered} \cdot 22, \mathrm{~L} . \\ 4 \cdot 7, \mathrm{~L} . \\ \hline \end{gathered}$	Turpentine, 13 Vaseline, 25°	4*4. L.	
Woods (dry) - Mahogany	1-3-1.8							
Oak, teak. . .	-5, L.	Gas carbon . Graphite .		Substance	Temp.	Con	Obs.	
Pine, walnut, .		Marble, white		Wat	17°	.00131		
Miscellaneous		Mica*. .	I•8, L.		20	00143	M.\& C.	
Asbestos paper.	- 6	Yape	3, L.	",	4	OOI38	H. F.	
Cardboa	5	Paraffin wax	6, L.	"	23.6	OOI 52	\}Weber	
Cement		Porcelain.	$2 \cdot 5, \mathrm{~L}$.		11	-00¢47	Lees,	
Cotto	55.	Quartz, \|	axis	30, L.		25	-001 36	

* Perp. to cleavage plane. + Average for igneous and sedimentary rocks ; see Brit. Ass. Reports. L., Lees, 1892 \& 1898 ; M. \& C., Milner \& Chattock, 1898 ; R. W., R. Weber.

GASES

In the case of a gas the thermal conductivity $k=1 \cdot 603 \eta c_{v}$, where η is the viscosity, and c_{v} the specific heat at constant volume. Stefan, and Kundt and Warburg have found, in agreement with this formula, that k for air, hydrogen, etc., is constant between the pressures 76 cm . and 1 cm . k increases with the temperature. (See Meyer's "Kinctic Theory of Gases.")

Gatas.	Temp.	Cond. k.	Gas.	Temp.	Cond. k.	Gas.	Temp.	Cond. k.	Gas.	Temp.	Cond. k.
	$\begin{array}{r} -150^{\circ} \\ 0 \\ 0 \\ 100 \\ 0 \\ 7 \end{array}$	$\begin{array}{r} \times 10^{-5} \\ 1 \mathrm{I}^{7}, \mathrm{E}, \mathrm{E} \\ 3 \mathrm{I} 8, \\ 3 \mathrm{E} .9, \mathrm{G} . \\ 36 \cdot 9, \mathrm{G} . \\ 33^{9} 9, \mathrm{~S} . \\ 524, \mathrm{~W} . \end{array}$	$\begin{aligned} & \text { Air } \\ & \mathrm{O}_{2} \\ & \mathrm{~A} \\ & \mathrm{CH}_{4} \\ & \mathrm{C}_{2} \mathrm{H}_{4} \\ & \mathrm{CO} \end{aligned}$	$\begin{aligned} & C . \\ & 0^{\prime} \\ & 7 \\ & 0 \\ & 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \times 10^{-5} \\ & 5^{2.2} \cdot \\ & 5^{*} \cdot 63, \mathrm{~W} . \\ & 3 \cdot 89, \mathrm{~S} \\ & 6.47, \mathrm{~W} \\ & 3.95, \mathrm{~W} \\ & 4.99, \mathrm{~W} \end{aligned}$	$\begin{gathered} \mathrm{CO} \\ \mathrm{CO}_{2} \\ " \\ \mathrm{NH}_{3} \end{gathered}$	$\begin{array}{r} \mathrm{C}^{\circ} \\ 0 \\ 0 \\ 0 \\ 100 \\ 0 \\ 100 \end{array}$		$\begin{aligned} & \mathrm{N}_{2} \mathrm{O} \\ & \stackrel{3}{\mathrm{NO}} \\ & \mathrm{Hg} \end{aligned}$	$\begin{array}{r} c \\ 0^{\circ} \\ 100 \\ 8 \\ 203 \end{array}$	$\begin{aligned} & \times 10^{-5} \\ & 3 \cdot 50, \mathrm{~W} . \\ & 5.06, \mathrm{~W} \\ & 4.60, \mathrm{~W} . \\ & 1.85, \mathrm{Sc} \end{aligned}$

* Mean of five observers.
E., Eckerlein, 1900 ; G., Graetz, 1885 ; S., Schwarze, 1903 ; Sc., Schleiermacher, 1889 ; W., Winkelmann, 1875.

COEFFICIENTS OF. LINEAR EXPANSION OF SOLIDS

To represent accurately over any considerable range the variation of length (l) with temperature (t) requires for almost-all solid substances a parabolic or cubic equation in t. But if the temperature interval is not large, a linear equation $l_{t}=l_{0}(\mathrm{I}+\alpha t)$ may be employed; and this gives a definition of the mean coefficient of linear expansion (a) over that temperature range. The coefficient of cubical expansion $=3 a$:

There is little point in tabulating coefficients of higher-powered terms of t, since for a given specimen it is as a rule impossible without measurement to assume with any accuracy anything more definite than the average value of even the first power coefficient (a): Except in a few cases the linear coefficient as defined above increases with the temperature. The values of α subjoined are per degree. C , and except when some temperature is specified, for a range round and about $20^{\circ} \mathrm{C}$. Some substances expand irregularly, and extrapolation of a may therefore be dangerous. Interpolation of α from the constituent metals must be employed with caution in the case of alloys. (See Winkelmann's "Handbuch der Physik," "iii. 1906.)

COEFFICIENTS OF LINEAR EXPANSION OF SOLIDS (contd.)

Element.	α.	Obs.	Element.	α.	Obs.	Element.	α.	Obs.
	$\times 10^{-6}$			$\times 10^{-6}$			$\times 10^{-6}$	
Aluminium	$25^{\circ} 5$	V. '93	Copp	16.7	V. '93	Palladium	I 1 ${ }^{\text {² }}$	S. '03
Antimony	12	F. '69	Gold	$13^{\circ} 9$	V. '93	Platinum	8.9	B. '88
Bismuth .	15.7	V. '93	Iriclium	$6 \cdot 5$	13. '88	Potassium	83	H.'82
C. (diamond)	$1 \cdot 2$	F. '69	Iron (cast)	$10 \cdot 2$	D. '02	Selenium, 40°	$36 \cdot 8$	F. ${ }^{\prime} 69$
" (gas car-			", (wrought)	1199	H.D. 'oo	Silver .	18.8	V.'93
bon)	$5 \cdot 4$	F. '69	Stcel, 10.5 to	11.6	N.P.L.	Sulphur.	c. 70	
, (graphite)	$7{ }^{\circ} 9$	F. '69	Lead . .	$27 \cdot 6$	M. '66	Thallium, 40°	$30^{\circ} 2$	F. '69
Cadmium	28.8	M. '66	Magnesium.	$25^{\circ} 4$	V. '93	Tin .	21.4	M. '66
Cobalt	12.3	T. '99	Nickel	12.8	T. '99	Zinc, $25^{\circ} 8$ to	263	N.P.L.

Substance	α.	bs	Substance	α.	Obs.	
	$\times 10^{-6}$		Miscellaneous (contd.)	$\times 10^{-6}$		
Aluminium bronze	$\begin{aligned} & 17 \circ \\ & 1809 \\ & 177 \end{aligned}$	$\begin{aligned} & \text { N.P.L. } \\ & \text { N.P.L. } \\ & \text { B. } 888 \end{aligned}$	Glass, flint, $45 \mathrm{SiO}_{2}$, $8 \mathrm{~K}_{2} \mathrm{O}, 46 \mathrm{PbO}$	78		
Brass (ordy.) c. $66 \mathrm{Cu}, 34 \mathrm{Zn}$					Sc.	
Bronze, $32 \mathrm{Cu}, 2 \mathrm{Zn}, 5 \mathrm{Sn}$ §			. ${ }^{\text {a }}$ Jena, $16^{\prime \prime \prime \prime \prime \prime}$ (sce p. 74)	8	T.S.S.	
onstantan (Eureka), 60 $\mathrm{Cu}, 40 \mathrm{Ni}$	17.0	N.P.L	$59^{\prime \prime \prime}$ (see p.74)	$5 \cdot 7$ 7×2		
German silver, $60 \mathrm{Cu}, 15$			Granite	$8 \cdot 3$		
$\mathrm{Ni}, 25 \mathrm{Zn}, 50^{\circ}$	18.4	Pf. ${ }^{1} 2$	Gutta-percha	198	Ru. ${ }^{8} 2$	
Gunmetal (Admiralty)	18.1	N.P.L.	Ice, -10° to 0°	507	Vn . ${ }^{\circ} 2$	
Magnalium, $86 \mathrm{Al}_{3} \mathrm{I} 3 \mathrm{Mg}$	24	St. 'ol	Iceland spar, \|	axis	$25^{\circ} 1$	B. 98
Nickel steel, ${ }^{*} 10 \% \mathrm{Ni}$	13.0	N.P.L.	"\# $\quad 1$ axis	-5.6	B. 288	
" \quad " 20%	$19^{\circ} 5$	$\begin{aligned} & \text { N.P.L. } \end{aligned}$	ble, white Carrara,			
" \quad " 36% "	12.0		$15^{\circ}{ }^{14} 4$	3.5	N.P.L.	
	$0 \cdot 9$	N.P.L.		4.4		
" ", 40%,	$6 \cdot 0$	N.P.L.	Paraffin wax, $0^{\circ}-4$	c. 110		
" " \quad - 0%	2.5	N.P.L.	Porcelain Berlin	$2 \cdot 8$		
	12.5	N.	" \quad, $0^{\circ}-100^{\circ}$	3.4		
$\text { hosphor bronze, } 97^{\circ 6} \mathrm{Cu} \text {, }$ $2 \mathrm{Sn}, 2 \mathrm{P}$	16.8	B. '88	yeux	3.4	$\begin{aligned} & \text { Bd. 'oo } \\ & \text { T. 'oz } \end{aligned}$	
Platinum-iridium, 90 Pt ,			Portlund stone"	c. 3		
$10 \mathrm{Ir} \ddagger$.	8.7	13. '88	Quartz (crystal), \|	axis	75	B. '88
Platinum-silver, 33 Pt ,				13.7	B. '88	
Solder, $2 \mathrm{~Pb}, 1 \mathrm{Sn}, 50^{\circ}$	15 25	Sm.		22 42	c. 03	
Speculum metal, 68			0° to 100°		S. ${ }^{\circ} 1$	
32 Sn	193		0° to 1000°	4	R. ${ }^{10}$	
Type metal, c. 135°	19	1.	Sandstone 7 to	12		
Miscellaneous			Slate 6 to	10		
Brick (Egyptian)	9.5	N.P.L.	Woods (I) along grain			
Cement and concrete, io to	14		Beech; mahogany	c. 3	VI. '68	
bonite . $\mathrm{CaF}^{\circ} \cdot 6+$ to	77		Oak ; pine .	c. 5	Yl. '68	
Fluor spar, Ca Glass, soft, 68	19				V1. '68	
Glass, soft, $14 \mathrm{Na}_{2} \mathrm{O}_{2}, 7 \mathrm{CaO}$	$8 \cdot 5$	Sc.	Mahogany	40	Vi. '68	
" hard, $6+\mathrm{SiO}_{2}$,			Pine .	34	Y1. ${ }^{\text {2 }}$	
$20 \mathrm{~K}_{2} \mathrm{O}, 11 \mathrm{CaO}$	97	Sc				

[^8]
COEFFICIENTS OF CUBICAL EXPANSION OF GASES

The volume coefficient, α, at constant pressure is defined by $v_{t}=v_{0}(1+a t)$; the pressure coefficient, β, at constant volume is defined by $p_{t}=p_{0}(1+\beta t)$, where v_{t} and p_{t} are the volume and pressure respectively corresponding to t°, the initial volume and pressure $\left(v_{0}, t_{0}\right)$ being measured at $o^{\circ} \mathrm{C}$. The values of both α and β depend on the initial pressure of the gas. If a gas obeys Boyle's law exactly, $\alpha=\beta$.

Comparison of rarefied gas, \mathbf{H}_{2} and absolute temperature scales.By graphically or otherwise extrapolating α and β to zero pressure, they become equal (as we should expect, for rarefied gases should behave as ideal gases and obey Boyle's law), and we may write $\alpha=\beta=\gamma$. For example, Berthelot finds from Chappuis' data-

$$
\begin{aligned}
\text { For } \mathrm{H}_{2}, \text { mean } \gamma & =00366207=1 / 273^{\circ} \circ 7 \text { (see p. 44) } \\
\mathrm{N}_{2}, \quad \eta \gamma & =00366182=1 / 273^{\circ} \circ 9 \text { (see p. 44) }
\end{aligned}
$$

Kelvin's absolute temperature scale agrees with the ideal gas scale, and therefore with the rarefied gas scale. Now, as will be seen below, β for $\mathrm{H}_{2}=\gamma$ very nearly, and thus the constant-volume hydrogen scale of temperature may justifiably be taken as closely approximating to the thermodynamic scale (see also p. 44).
(See Young's "Stoichiometry"; and Berthelot and Chappuis, Trav. et Mém. du Bur. Intl., 1907.)

Gas.	Temp			Obs.	Gas.	Temp	p_{0}	β	Obs
at Constant					T CONST				
	-	$\mathrm{cm} . \mathrm{Hg}$. $100 \cdot 1$	036728	C., 1903	Air			037666	
	--100		3671	R., I847			32	37172	
	100	100	36600	C., 1903			17	36630.	
	--100	76	3661	R., 1847			17-24	36513	R., I8
	-	76	36609				76	36650	
	0-100	100	367313	C., 1903			1001	36744	C., 1903
	00	139	367750	C., 1903			2000	3690 3887	R., 1847
		200.	434 218	A., 1890		--1067	2000	38887	J. P
		1000	486	A.,	H	0-100	52	3662	T. J., '02
		,	3669	R., 1847		-100	70	66255	
	0-20		37128	C., 1903		--100	100	66256	
	40		37100			--100	109	36627	O, 1908
	100		370			0-100	53	36683	C., 1903
	0-20		3760	"		--100	79	36718	
	0-40		37536			0-100	100	7440	
	0-100		3741			0-100		738	M N.,'O3
	0-20	1377	3797	\%		0-1067	18-23	6652	
	0-40		37906	,		0-100	52	6627	J.,
	0-100		37703 37282			0-100	70 100	+625	O., "1908
			3719	184	A		51°	668	96
	0-50		3854	P.D.,'o6	A	\bigcirc	76	667	
			3903	R., 1847		-1067	23	36648	
A., Amagat ; C., Chappuis; J. P., Jacquerod \& Perrot; K. R., Kuenen \& Randall ; M., Melander ; M. N., Makower \& Noble ; O., Onnes ; P. D., Perman \& Davies ; R., Regnault ; R. M., Richarls \& Marks ; T. J., Travers \& Jacquerod.						0-20	99		., 1903
						0-100	$99^{\circ} 8$	2	
						0-1067	-	56	
							76	3676	R., 1847
					SO_{2}	-	76	3845	R., 1847

55
 COEFFICIENTS OF EXPANSION

COEFFICIENTS OF CUBICAL EXPANSION OF LIQUIDS

As with solids (see p. 52), if the temperature interval is not large, a linear equation $\tau_{t}=v_{0}(\mathrm{I}+a t)$ may be employed to show the relation between the volume (v) of a liquid and its temperature (t). The mean cocfficient (a) thus defined increases in general with the temperature. The values of α subjoined are per ${ }^{\circ} \mathrm{C}$., and for a range round $18^{\circ} \mathrm{C}$. unless otherwise specified.

Liquid.	Temp. range.	Mean Cooff cient from $\mathbf{0}^{\circ} \mathbf{C}$. to $t^{\circ} \mathbf{C}$.	Observer.
Water (see p. 22 and below) Mercury (see p. 22)	H scale 17 to 40 17 to 100 24 to 299 0 to 100 -10 to 300 0 to 180	$\begin{aligned} & 0_{3} 13019 /(t)-0_{4} 65769+0_{5} 86797 t-0_{7} 7336 t^{2} \\ & \text { Density }=1-\frac{(t-3982)^{2}}{466,700} \cdot \frac{t+273}{t+67} \cdot 350-t \\ & .00018179+\cdot 0_{9} 175 t+0_{10351} t^{2} \\ & .00018169-0_{8} 2817 t+0_{9} 115 t^{2} \\ & .000180555+0_{7} 1244 t+0_{10} 254 t^{2} \\ & .000181385+\cdot 0_{8} 9770 t+0_{10} 18318 t^{2} \end{aligned}$	Chappuis,'97 Thiesen, '03 Regnault, '47 (Broch) Chappuis, 'o7 (Moss, 1911 Donaldson,'12

Liquid.	α	Liquid.	α	Liquid.	a	Liquid.	a
Acetic acid	$\times 10^{-6}$ 107	Ether, ethyl	$\left.\begin{gathered} \times 10^{-5} \\ 163 \end{gathered} \right\rvert\,$	Pentane	$\left\lvert\, \begin{array}{cc} \times 10^{-1} \\ 159 \end{array}\right.$	Water, 60-80	$\times 10^{-3}$
Alcohol, me.	122	Ethyl bromide	137	Tuluene	109		
" ethyl	110	Glycerine .	53	Turpentine .	94	Solutions -	
A ${ }^{\text {an aml }}$	93	Mercury (see	above	Xylol (m)	101	$\mathrm{CaCl}_{2}, 5 \cdot 8 \%$	25°
Aniline	85	Methyl iodide	121	Water, $5^{\circ}-10^{\circ}$	$5 \cdot 3$	" 40.9%	$45 \cdot 8$
Benzene	124	Oil, olive .	70	" 10-20	15%	$\mathrm{NaCl}, 26 \%$	436
CS_{2}	121	" paraffin	90	" 20-40	30.2	$\mathrm{H}_{2} \mathrm{SU}_{4}, 100 \%$	57
Chloroform	26	, , $20^{\circ}-199^{\circ}$	110	" $40-60$	$45 \cdot 8$		

MECHANICAL EQUIVALENT OF HEAT

Joule's equivalent, J, is here given as the number of ergs equivalent to a calorie, i.e. the heat required to raise 1 gram of water through $1^{\circ} \mathrm{C}$. at some specified temperature. The 15° calorie is about I part in Icoo greater than the 20° calorie. (See p. 56.)

See Griffith's "Thermal Measurement of Energy," 1901.

Observer.	Calorie.	Ergs.		Observer.	Calorie.	Ergs.
		N. scale	$\times 10^{\circ}$			

SPECIFIC HEAT OF WATER

Callendar and Barnes (Phil. Trans., 1902) used an electrical method of determining the temperature variation of the specific heat of water. The specific heats below are reduced by Callendar ("Ency. Brit." Art. "Calorimetry") from their results; they are relative to the specific heat at $20^{\circ} \mathrm{C}$. on the C.P. nitrogen scale. The 20° calorie (see pp. 5 and 55) is adopted as $4^{\circ} 180$ joules $=4.180 \times 10^{7}$ ergs, being the mean of the results of Rowland (1879) and of Reynolds and Moorby (reduced), each of whom used a mechanical method of determining "J." Thus the values of J below do not rest on the values attributed to the electrical standards employed. The specific heat of water is a minimum at $37.5^{\circ} \mathrm{C}$., according to Callendar and Barnes.

The 15° calorie (according to Barnes, Proc. Roy. Soc., 1909) $=4^{\circ} 184$ joules, assuming the e.m.f. of the Clark cell at $15^{\circ} \mathrm{C}$. $=14330$ international volts.

The mean calorie ($={ }_{100}^{100}$ of heat required to raise 1 gram of water from 0° to $100^{\circ} \mathrm{C}$.) $=4 \cdot 185$ joules (Barnes, 1909) $;:=4 \cdot 184$ joules (Reynolds and Moorby, 1897 , corrected by Smith).

SPECIFIC HEAT OF MERCURY

In terms of the gram calorie at $15^{\circ} .5$ on the const. vol. H. scale. (Barnes and Cooke, Phys. Rev., 15, 1902.) Mercury has a minimum specific heat at $140^{\circ} \mathrm{C}$. (Barnes, Brit. Ass. Rep., 1909.)

Temp.	$0^{\circ} \mathrm{C}$	20°	40°	60°	80°	100°	200°
Specific heat	.0335	.0333	.0331	.0329	.0328	$(\circ 0327)$	$(.032)$

SPECIFIC HEATS OF THE ELEMENTS
For gases, see p. 58. (See Waterman, Phys. Rev., 1896.)

Substance.	Temperature	heat.	Observer.	Substance.	Temperature	Sp.	Observar.
Aluninium	$\begin{array}{\|c} -182^{\circ} \text { to } 15^{\circ} \\ 15 \text { to } 185 \\ 600 \end{array}$	$\begin{array}{r} \cdot 168 \\ \cdot 219 \\ \cdot 282 \end{array}$	Tilden, 1903 Richards, '93	Bromine, liqd. Cadmium * pure	$\left\lvert\, \begin{gathered} 13^{\circ} \text { to } 45^{\circ} \\ -186 \text { to }-79 \\ 18 \text { to } 99 \end{gathered}\right.$	107 050 055	Andrews, ' 48 Behn, 1900 Voigt, 1893
Antimony .	-186 to -79	-0462	Behn, 1900	Cæsium pure	18 to 26	-048	E. \& G., 1900
	17 to 92	. 0508	Gaede, 1902	Calcium	-185 to 20	-157	N. \& B., 1906
Arsenic, cryst. \# amorph.	21 to 68	$\stackrel{+}{083}$	B. \& W., 1868	Carbon-	0 to 100	-149	Be., 1906
Barium .	-185 to 20	-068	N. \& B', 1906	Gas carbon.	24 to 68	'204	B. \& W., 1868
Beryllium .	0 to 100	$\cdot 425$	N. \& P., 1880	Charcoal	0 to 24	-165	H.F.Weber,'75
Bismuth -	-186 22 to 100	$\cdot 0284$.0304	Giebe, 1903	Graphite	$0 \text { to } 224$	- 238	"
Boron, amor.	22 0 0 to 100	- $\cdot 1.304$	W. \& G., 1896	Graphite	$\begin{array}{r} 50 \\ -11 \end{array}$.114 $\cdot 160$	",
Bromine, solid	-78 to -20	- 084	Regnault, '49		202	-297	

* Contained Fe and Zn .

SPECIFIC HEATS OF THE ELEMENTS (contd.)

Substance.	Temperature.	Sp. heat.	Observer.	Substance.	Temparature.	Sp.	Observer.
Carbon (contd. Graphite Diamond	$977{ }^{\circ} \mathrm{C}$. 467	H.F.Weber,'75	Palladium . Phosphorus" yellow	$\begin{array}{r} -186^{\circ} \text { to } 18^{\circ} \\ \quad 18 \text { to } 100 \end{array}$	$\begin{array}{r} \cdot 053 \\ \cdot 059 \end{array}$	Behn, 1898
	06	113			-78 to 10		
	206	$\begin{array}{r}\cdot 273 \\ .459 \\ \hline\end{array}$			13 to 36	$\cdot 202$	Kopp, 1864
Cerium".	0 to 100	- 4	H., 18	liquid	49 to 98	-205	Person, 184
Chlorine, liqd. Chromium. ($1.4 \% \mathrm{Fe} \& \mathrm{Si}$)	0 to 24	-226	Knietsch	inun	15 -186 to 98 18		Regnault, 1853
	-200	-067	Adler, 1903		18 to 100	'0293	Behn, 1898
	0	-104			1230	03	
	- 100	2		Potassium	78 to 23	-166	Tilden, 1903 Schüz, 1802
Cobalt . . .	400	-133		Rhodiu	10 to 97	- 58	Reg
	15 to 100	-082	den, 1903	Ruthenium	0 to 100	-061	Regnault, 1862 Bunsen, 1870
Copper . . .	15 to 630	-103		eaium, cryst.	22 to 62	-084	B. \& W., 1868
	-192 to 20	-0798	Schmitz, 1903	Silicon, cryst.	-18 to 38	$\begin{array}{r}+895 \\ -123 \\ \hline\end{array}$	
	20 to 100	$\bigcirc 936$			57	-183	
Didymium.Gallium, solid	$\begin{aligned} & 900 \\ & 0 \text { to } 100 \end{aligned}$	-118	Le Verrier, '92 H., 1876		232	-203	
	12 to 23	-079		Silv	186 to -79	- $0+96$	Behn, 1900
Gallum, solid	12 to 119	-80			15 to 100	-056	B. \& S., 1895
Germanium .	0 to 100	$\bigcirc 74$	N. \& P̈., 1887	Sodium .	-185 to 20	. 239	Tilden, 1903
	-185 to 20	$\bigcirc 35$	N. \& B., 1906			- 297	
Indium . Iodine Iridium	18 to 99	-0303	Voigt, 1893		128	$\cdot 333$	Bernini, 1906
	0 to 100	$\bigcirc 057$	Bunsen, 1870	Sulphur			
	-186 to 18	-0282			17 to 45	-163	Kopp, 1865
	18 to 100	-0323		Tantalum	119 to 147	:235	Person, 1847
	-192 to 20	-089	Schmitz, 1903		-185 to 20	$\begin{array}{r} 033 \\ 036 \end{array}$	N. \& B., 1906 v. Bolton, $190{ }^{5}$
	20 to	${ }^{1} 119$		Tellurium, crys.	15 to 100	\bigcirc	Fabre, 1887
		-137	Stücker, 1905	Th	-192 to 20	-300	Schmitz, 1903
	0 to 1100 0 to 100	-153	Harker, 1905		20 to 100	-0326	
Lead. . ${ }^{\text {c }}$	-192 to 20	-293	Schmitz, 1903	Thoriun Tin.	0 to 100.	-028	ilson, 1883
	20 to 100	-305			19 to 99	\bigcirc	Voigt
Lithium	300	-0338	Naccari, 1888		240	-064	Spring, 1886
	$\begin{aligned} & 0 \text { to } 19 \\ & 0 \text { to } 100 \end{aligned}$	837.	Be., 190	Titanium	-185 to 20	. 082	N. \& B., 1906
Magnesium	186 to -79	${ }^{1} 180$			0 to 100	-113	N. \& P., 1887
	18 to 99	. 246	Vehn, 1900		0 to 440	162	
Manganese	225	-281			-185 to 20	-036	. \& B., 1906
	14 to 97	-122	Regnault, 1862	Uranium	20 to 100	034	Regnault, 1840
Mercury . Molybdenum	See preced i	ing P		Uranium	11	-06	Regnault, 1840 Bliumcke, 1885
Molybdenum --	$\begin{array}{r} -185 \text { to } 20 \\ 15 \text { to } 91 \end{array}$	-63	N. \& B., 1906	Vanadium	0 to 98 0 to 100	115	Mache, 1897
	$\begin{array}{r} 15 \text { to } 91 \\ -186 \text { to } 18 \end{array}$	\bigcirc	D. \& G., 1901	Zin	192 to 20	-084	Schmitz, 1903
Osmium	$\begin{array}{r} -186 \text { to } 18 \\ 18 \text { to } 100 \end{array}$	-109	Behn, 1898		20 to 100	-093	
	19 to 98	-31	Regnault, 1862	Zirconium	300 0 to 100	$\begin{aligned} & 104 \\ & 066 \end{aligned}$	Naccari, 1888 M. \& D., I 873

B., Berthelot ; Be., Bernini ; B. \& S., Bartoli \& Stracciati ; B. \& W., Bettendorff \& Wüllner• D. \& G., Defacqz \& Guichard; E. \& G., Eckardt \& Graefe ; H., Hillebrand ; M. \& D., Mixter \& Dana ; M. \& G., Moissan \& Gautier ; N. \& B., Nordmeyer \& Bernouilli ; N. \& P., Nilson \& Pettersson; W., Waterman.

SPECIFIC HEATS OF GASES AND VAPOURS

The values at const. pressure are, unless otherwise stated, all at atmospheric pressure. The specifi heats given are calories per gram of gas per degree C. at the temp. stated.

Gas.		Sf ht .		Gas.		p. ht.	Observer
AT CONSTANT PRESSURE ((p)				Ammonia, NH_{3}. Nitrous oxide, $\mathrm{N}_{2} \mathrm{O}$ Nitric oxide, NO			Wiedemann 1876
Air (dry)	$\|$$20^{\circ} \mathrm{C}$. 100 $20-440$ $20-98$ $-102-17$ -50 $20-90$ - - 0 -200 $20-440$ $20-800$ -190 $16-343$ $19-388$ $206-377$ $23-99$ 0 20 100 atmos. 100				13-172	$\cdot 213$.232	
				N . peroxide, NO_{2}.	27-67	1.625	B. \& O., I 88
				$\mathrm{H}^{\text {P }}$	20-206	-245	Regnault, '6
					86-190	$\cdot 160$	
				Benzene,	34-115	29	
				Chloroform CHC	27-118	14	
Nitrogen 30 atmos.				Me . alcohol $\mathrm{CH}_{4} \mathrm{O}$. Et. alcohol $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	101-223	458 453	Regnault, '6 Regnault, '6
Nitrogen				Et. alcohol $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$. , ether $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$.	108-220	453 428	$\begin{gathered} \text { Regnault, '6 } \\ \text { W., } 1876 \end{gathered}$
Oxygen -				Turpentine, $\mathrm{C}_{10} \mathrm{H}_{16}$	179-249	. 506	
Chlorine				AT	NT	UM	
Bromine							
Iodine .					c. 50		
Carbon monoxide				Carbon dioxide	c. 55	${ }^{-1650}$	
", dioxide :				Argon .	0-2000	-0746	(er, 1909
				Nitrogen		175	
"er vapour 30						340	
Water vapour							

B. \& O., Berthelot \& Ogier ; D., Dittenberger ; H. \& A., Holborn \& Austin (Reichsanstalt) ; W., Wiedemann

* H. \& H., Holborn Nitrogen $\left(0-1400^{\circ}\right), c_{p}=2350+000019 t$ and Henning $\left\{\begin{array}{cc}\mathrm{CO}_{2} & \left(0-1400^{\circ}\right), \mathrm{c}_{p}=2010+0000742 t-{ }^{\circ} \mathrm{O}_{7} 18 t^{2}\end{array}\right\}$ heats between (Reichsanstalt). Water vapour ($100-1400^{\circ}$), $\left.c_{p}=4669-0000168 t+{ }^{\circ} 074 t^{2}\right) 0^{\circ}$ and $t^{\circ} \mathrm{C}$.
+ Air, $c_{v}=\cdot 1715+\circ 02788_{\rho}$ where ρ is the density (gm./c.c.). $\quad \mathrm{CO}_{2}, c_{v}=165+.2125 \rho+34 \rho^{2}, \rho$ being densit $\ddagger \mathrm{H}, c_{v}$ diminishes with increasing density and falling temp. $\quad \| \mathrm{N}, c_{v}={ }^{1} 175+{ }^{\circ} 00016 t, t$ being the temp.

RATIO OF THE SPECIFIC HEATS FOR GASES AND VAPOURS

$\gamma=$ the ratio of the specific heat at constant pressure to that at constant volume. γ is usually determined directly by some method involving an adiabatic expansion, such as the determination of the velocity of sound in the gas. From a knowledge of either (1) the pressure or (2) the temperature immediately following an adiabatic expansion (Clément and Desormes, Lummer and Pringsheim's methods respectively), γ can be deduced from $p v^{\gamma}=$ const., or $\theta v^{\gamma-1}=$ const.
(See Capstick, "Science Progress," 1895 ; and Moody, Phys. Rev., Ap., 1912.)

Gas.	Temp.	γ	Observer.	Gas.	Temp.	γ	Observer.
Monatomic gases				Air (dry)	${ }^{0}$	1.402 1.402	Koch, 1907
Helium	$0^{\circ} \mathrm{C}$. 0	1.63 1.667	B. \& G., 1907 Niemeyer, 'o2	" "	500	1.402 1.399	
Neon .	19	-1.642	Ramsay, 1912	", " . . .	900	I. 39	Kalähne", 'o3
Krypton	19	1689	- "	"	$-79 \cdot 3$	1405	Koch, 1907
Xenon.	19	1.666		" \quad, 200	0	1.828	,
Mercury vapour	310	1.666	K. \& W., 1876	H", " atmos.	-79.3	2.333	
Diatomic gases				Hydrogen		1419	Hartmann,'o
Air (dry) . .	5-14	1402	L. \& P., 1898	Nitrogen	4-16		L. \& P., 189
Air (dry)	0	$1 \cdot 401$	Stevens, 1905	Oxygen	5-14	1.400	L. \& P., 1898
\because	15	$1 \cdot 401$	Makower, 'o3	Carbon monoxide .		$1 \cdot 401$	Leduc, 1898
"		1414	Hartmann,'o2	Nitric oxide, NO		1394	Masson

B. \& G., Behn \& Geiger ; F. Fürstenau ; K. \& W. Kundt \& Warburg ; L. \& P., Lummer \& Pringsheim.

RATIO OF THE SPECIFIC HEATS FOR GASES AND VAPOURS (conti.)

Gas.	Temp.	γ	bserver.	Gas.	Temp.	γ	bserv
Triatomic gases				Acetylene, $\mathrm{C}_{2} \mathrm{H}_{2}$		$1 \cdot 26$	M. \& F., 1897
Ozone . . . ${ }_{\text {O }}^{\text {Ofer }}$ Wapour		${ }^{1} 29 *$	Jacobs, 1905	Ethylene, $\mathrm{C}_{2} \mathrm{H}_{4}{ }^{\text {a }}$.		1264	Capstick,'95
Water vapour Carbon dioxide	$100^{\circ}($? $4-11$	$1 \cdot 305$ 1.300	Makower, ${ }^{\text {L }}$, 3 P P., 1808	Benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$.	20°	1.40	Pagliani, ${ }^{\text {, }} 96$
" ".		1.306	Hartmann, ${ }^{\text {os }}$	oform,	24-42	$1 \cdot 110$	Stevens, ${ }^{\text {o2 }}$
	500	$1 \cdot 26$	F., 1908		998	$1 \cdot 150$	Stephens, '02
Ammonia, Nitrous oxide		1.336	Ledue, 1898	$\mathrm{ClC}_{4} \mathrm{Cl}_{4}$	99.7	1130	Capstick, '95
Nitrous oxide, Nitrogen $\mathrm{N}_{2} \mathrm{O}$		1324	Natan	Me. alcohol	997	1.256 1.274 127	Stevens, ${ }^{\text {Capstick, }}$ ' ${ }^{\text {a }}$ '
$\left.{ }_{\text {peroxiden }}\right\}$	150	${ }_{1}^{1 \cdot 172}$	Natan	", chromid	19-30	1.274	Capstick, '93
${ }^{\mathrm{H}_{2} \mathrm{~S}}$	-	1.340	Capstick, '95	" iod		1.286	" "
CS_{2}.		1239		Et. alco		I.133	Jaeger, 188
Sulphur dioxide. \{	$\begin{gathered} 16-34 \\ 500 \end{gathered}$	126	Müller, 1883 F., 1908	", bromide	99.8	+1.134	Stevens, 'oz Capstick,
Polyatomic gases		12		", chlorid	22.7	1. 188 1 1	Capstick, '93
Methane, CH_{4}				eth	12-20	r.024	Low, $1894{ }^{\text {" }}$
Ethane, $\mathrm{C}_{2} \mathrm{H}_{5}$	-	${ }_{1}^{1} 123$	Capstick, ${ }^{\text {a }}$ (${ }^{\text {daniel \& }}$	A"cetic acid	${ }_{136.5}^{99.7}$	1.112	Stevens, 'oz
Propane, ${ }^{\text {C }}{ }_{3} \mathrm{H}_{8}$		$\underset{1}{122}$	$\left\{\begin{array}{l}\text { Daniel \& } \\ \text { Pierron, } 99\end{array}\right.$			1.147	" "

* Extrapolated; F., Fürstenau ; L. \& P., Lummer \& Pringsheim; M. \& F., Maneuvrier and Fournier.

SPECIFIC HEATS OF VARIOUS BODIES

In most cases, the specific heats given must only be regarded as rough average values.

Substance.	Temp.	Sp. ht.	Substance.	Temp.	Sp. ht.	Substance.	Temp.	Sp. ht.
Alloys- Brass, red Eureka yellow (Constantan) German silver .	${ }^{\circ} \mathrm{C}$.		Ether, ethyl	18°				
	0	-090	Glycerine	18-50	${ }^{5} 58$	Glass, Jena 16 ${ }^{\prime \prime \prime} \dagger$	18	
	0	-088	Oil, olive	$18-50$ 7	- 47	", Jena 59 ¢	18	$\xrightarrow{19} \times 19$ to
	18	-098	", paraffin	20-60	51 to	Granite	20-100	$\left\{\begin{array}{l}\text { 19 to } \\ .20\end{array}\right.$
	0-100	'095	Sea-water	17	$\begin{array}{r}54 \\ .94 \\ \hline 4\end{array}$	Ice	-21 to	\} 502
LiquidsAlcohol, amyl . " ethyl.			Toluene .	18	40			
	18		Turpentine .	18	42	diarubber	15-100	$\left\{\begin{array}{l}\text { 2 } \\ \\ \end{array}\right.$
	0	. 547	Miscel-			Marble, white	18	$\left\{\begin{array}{l}21 \text { to } \\ 22\end{array}\right.$
" me	40	$\cdot 6+8$	laneous -			Paraffin wax	0-20	(22
Aniline *. methyl	12	$\cdot 601$	Asbestos	20-100	20	Porcelain \ddagger	15-1000	255
Benzene .	15	$\cdot 514$	Basalt	20-100	'20 to	Quartz, SiO_{2}	0	-174.
Brine,density $=1.2$(Harker)	40	- 340	Ebonite	20-100	$\bigcirc 24$		350	- 279
	-20	. 423	Fluorspar, $\mathrm{CaF}_{\text {F }}{ }_{2}$	20-100	- 31	Rock salt, NaC	18	$\cdot 21$
	5	$\cdot 71$	Glass, crown .	10-50	+21 $\cdot 16$	Sand (ilica (ius)§.	20-100	- 19
	15	72	Glass, crown	10-50		Silica (lused) §.	$\begin{aligned} & 15-200 \\ & 15-800 \end{aligned}$	-2co

LATENT HEAT OF FUSION

The number of gram calories required to convert I gram of substance from solid into liquid without change of temperature.

ICE

Temp.	Lt. ht.	Observer, etc.						
$\begin{gathered} -6.5^{\circ} \mathrm{C} \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} \text { cals. } \\ 76^{\circ} \cdot 3 \\ 79^{\circ} 59 \\ 80^{\circ} 22 \\ 79^{\circ} 77 \end{gathered}$	Pettersson, 188 r . Regnault, 1843, corrected. Bunsen, 1870 , with ice calorimeter. Smith, Phys. Rev., 1903 (in terms of 15° calorie $=$ taking Clark cell $=1^{\prime} 433$ volts at $15^{\circ} \mathrm{C}$.).					$4 \cdot 184$	ules,
VARIOUS SUBSTANCES								
Substance.	Temp.	Lt. ht .	Sabstance.	Temp.	It. ht.	Substance.	Temp.	Lt. ht .
Flements - Aluminium	${ }^{\circ} \mathrm{C} .$$657$	cals.		.$^{\circ} \mathrm{C}$.	cals.		${ }^{\circ} \mathrm{C}$.	cals.
		7713		175062	2716		311339	6347
Bismuth	- 269		${ }_{\text {Platinum }}$ Potassium			$\mathrm{NaNO}_{3} \mathrm{KNO}_{3}$.		
Cadmium	. 321	14	Silver . .	960	16 22	$\mathrm{H}_{2} \mathrm{SO}_{4}$.	${ }^{10} 3$	
Copper	327	43	Sulphur	115	9	Acetic acid	103${ }^{24} 84$	
Lead		3 3		418	14 28	Benzene	$5 \cdot 4$	44 4
Mercury.	1550		Zinc.CompoundsNH_{3}			Glycerine.	13	42
Palladium					108	Naphthalene Xylene .	80	3539
Phosphorus	44			-75				

LATENT HEAT OF VAPORISATION

Latent heats are given as the number of gram calories required to convert I gram of substance from liquid into vapour without change of temperature. The latent heat of vaporisation vanishes at the critical temperature.

Trouton's Rule.-The latent heat of vaporisation of i gramme molecule of a liquid divided by the corresponding boiling point (on the absolute scale) is a constant (C). $\mathrm{C}=21$ for substances of which both liquid and vapour are unassociated. If the liquid is associated, $C>21$ (e.g. water, $C=26$); if the vapour is associated, $C<2$ (e.g. acetic acid, $C=15)$.
[See Nernst's "Theoretical Chemistry."]

STEAM

Regnault's equation connecting latent heat and temperature takes no account of the temperature variation of the specific heat of water (see p. 56). The equation gives values which are too large at low temperatures. The equations of Griffiths, Henning, and Smith háve been reduced and are here expressed in terms of the 15° calorie $=4^{\circ} 184$ joules. Griffiths' and Smith's results rest further on an attributed value of 1433 volts for the e.m.f. of the Clark cell at $15^{\circ} \mathrm{C}$.

See also next page.
[The critical temp. of water is about $365^{\circ} \mathrm{C}$.]

Observer.	Temp. range of expts.	Latent heat \mathbf{L}_{t} at $t^{\circ} \mathbf{C}$.
Regnault, 1847.	$63^{\circ}-194^{\circ} \mathrm{C}$	$\mathrm{L}_{t}=605 \cdot 5-695 t$
Griffitlis, 1895.	30° and 40°	$\mathrm{L}_{t}=598 \cdot 0-605 t$
Henning, Ann. d. Phys., 1906,	$\left\{30^{\circ}-100^{\circ}\right.$	$\left\{\begin{array}{l} \mathrm{L}_{t}=5994-60 t, \text { to } 3 \% \\ \text { or } \mathrm{L}_{t}=9+3\left(365-t \cdot{ }^{3} 9125, \text { to } \cdot 1 \%\right. \end{array}\right.$
$\begin{aligned} & 1909 \\ & \text { Smith, Phys. } \\ & \text { Rev., } 1907 \end{aligned}$	$14^{\circ}-40^{\circ}$	$\begin{aligned} & \mathrm{L}_{t}=538.97-.6428(t-100)-0_{3} 8 \\ & \mathrm{~L}_{t}=597.2-.580 t \end{aligned}$

LATENT HEAT OF STEAM (contd.)

In terms of 15° calorie	Regnault, 1847 1847	$\begin{aligned} & \text { Griffiths, } \\ & 1895 . \end{aligned}$	$\begin{aligned} & \text { Joly, } \\ & 1895 . \end{aligned}$	Callendar,	Dieterici, 1905.	$\begin{aligned} & \text { Henning, } \\ & 1906 . \end{aligned}$	Smith, 1911.	Richards \& Matthews, 1911.
\mathbf{L}_{0}	$606+$	$598+$	-	595 t	$596.0 \ddagger$	$599 \dagger$	-	
\mathbf{L}_{100}	537	$537.5 \dagger$	540 §	540	538.9 II	5394	$540 \cdot 5$	$53^{\circ}{ }^{\circ}$

* From sp. ht. of steam experiments and total heat formula.
\dagger Extrapolated.
\ddagger Reduced to mean calories ($4 \cdot 185$ joules) ; Clark cell $=1 \cdot 433$ volts.
§ By comparing L_{100} (by steam calorimeter) with the mean specific heat of water between 12° and 100°. Callendar and Barnes' specific heat has been used (p. 56).
\# Carlton-Sutton, 1917.

LATENT HEATS OF VAPORISATION OF VARIOUS SUBSTANCES

The values below are for pure substances, and are due to Young, Proc. Roy. Dublin Soc., 1910. The precise calorie employed is not stated.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \& \& \& Methyl \& Ethyl \& Propyl \& \& Methyl \& Ethyl \& Propyl \& \&

\hline \& \& \& \& \multicolumn{3}{|c|}{Alcohol.} \& \& \multicolumn{3}{|c|}{Acetate.} \& \&

\hline \& cals. \& \& cals. \& \& \& \& \& \& \& \& cals. \&

\hline 20 \& \& \& \& 289.2
284 \& $220 \cdot 9$
$220 \cdot 6$ \& \& \& \& \& \& 8405 \&

\hline 40 \& \& \& 8.31
80.07 \& $$
\begin{aligned}
& 204.8 \\
& 277.8 \\
& 260 \cdot 1
\end{aligned}
$$ \& ${ }^{218}{ }^{217}$ \& \& 82.84
8.83 \& \& \& \& 840
8702
80.69 \&

\hline 80 \& \& $46 \cdot 00$ \& \& $269{ }^{\circ}$
259 \& ${ }_{213}^{213} 4$ \& 173° \& 78.44
7350

7 \& 98.59

94.07 \& 85.78 \& 79.80 \& | 89 |
| :--- |
| 9×59 |
| 9 |
| 159 | \&

\hline 100 \& $3 \mathrm{~F} \cdot 76$ \& $44 \cdot 15$ \& 69.94 \& 246% \& 1971 \& 164% \& 68.42 \& 88.39 \& 82.15 \& 76.33 \& ${ }_{92} 932$ \& 9141

\hline 120 \& 30.54 \& 42.08 \& 64.48 \& ${ }^{232} \cdot$ \& 184.2 \& $153{ }^{\circ}$ \& 62.24 \& 8287 \& 77.53 \& ${ }_{71}^{7184}$ \& 94.38 \& 86.58
8.52

\hline 140
160 \& 29.12
27.69 \& $39 \cdot 92$
$37 \cdot 95$ \& 56.58
4742 \& $216 \cdot 1$
$198 \cdot 3$ \& 171.1
156.9 \& 142.4. \& 55.93
$46 \cdot 7$ \& $76 \cdot 83$
69.96 \& 72.24
659 \& 67.66
62.80 \& 91.83
8963 \& $82 \cdot 82$
78.94

\hline 180 \& 26.29 \& 3540 \& $35^{\circ} 1$ \& $177 \cdot 2$ \& $139 \cdot 2$ \& ${ }_{116} 1$ \& 3187 \& 61.00 \& 59.87 \& 5723. \& 8771 \& 74.62

\hline 200
220 \& 24.57
22.82 \& \& ${ }^{24} \cdot 68^{*}$ \& 151.8 \& ${ }^{116.6}$ \& $102 \cdot 2$
85.

8 \& $1{ }^{1} \cdot 3^{8 \pm}$ \& 50.36 \& ${ }_{5}^{52.71}$ \& 50\%78 \& ${ }_{8} 85.55$ \& 68.81

\hline 240 \& 22.82
20.86 \& 29.45

25.56 \& 二 \& | $112 \cdot 5$ |
| :--- |
| $84.5 \dagger$ | \& $88 \cdot 2$

40.3 \& 85.3
63.4 \& \& 3487
20.998 \& $42 \cdot 63$
2717 \& \& 822.02
78.18 \& $62 \cdot 24$
54.11

\hline 260
280 \& 18.50
1560 \& 20.07 \& ㅍ \& \& \& 33.5 \& \& \& ${ }^{12} \mathbf{0} 111$ \& ${ }_{11}{ }^{7} 3^{\text {T}}$ \& 72.26
63.4 \& 43:82

\hline 280 \& 15.60 \& ${ }^{10} 43$ \& \& \& \& \& \& \& \& \& 63.48 \& 27.43

\hline \& $18^{\circ} .7$ \& $283^{\circ}{ }^{\text {. }}$ \& $197^{\circ} \mathrm{C}$ \& 240° \& $243^{\circ}{ }^{\text {. }}$ \& $263^{\circ} 7$ \& $193^{\circ} \cdot 8$ \& $233^{\circ} 7$ \& $250^{\circ} \cdot 1$ \& ${ }^{7} 6^{\circ} \cdot 2$ \& 3210 \& $288^{\circ} \cdot 5$

\hline
\end{tabular}

THERMOCHEMISTRY

In thermoshemistry the conservation of energy is assumed in accordance with experiment, and consequently (I) if a cycle of chemical change takes place so that the final state of the reacting substances is identical with the initial, then as much heat is absorbed as is given out, i.e. the total heat of the reaction is zero; (2) the heat of reaction only depends on the initial and final states of the reacting substances, and not on the intermediate stages. The results below are affected by, but have not been corrected for, any changes in the accepted values of the atomic weights since the experiments were carried out.

MOLECULAR HEAT OF FORMATION

The molecular heat of fomation (H.F.) is the heat liberated when the molecular weight in grams of a compound is formed from its elements. When the state of aggregation of an element or compound is not given, it is the state in which it occurs at room temperature and pressure. A minus sign before an H.F. means that heat is absorbed in the building up of the compound.

Unit-the gram calorie (at 15° to $20^{\circ} \mathrm{C}$.) per gm. molecule of compound. Aq $=$ solution in a large amount of water. The reactions are at constant pressure.

Example.-H.F. of $\mathrm{CuSO}_{4}=183,000$; of $\mathrm{CuSO}_{4} \cdot \mathrm{Aq}=198,800 . \therefore$ the heat of solution of $\mathrm{CuSO}_{4}=198,800-183,000=15,800$ cals. per gram mol.
(T., Thomsen, "Thermochemistry," trans. by Miss K. A. Burke ; B., Berthelot, Ann. d. Chim. et d. Phys., i878; T.B., mean of both these observers' values. For organic compounds, see p. 64 .

INORĞANIC COMPOUNDS

Compound.	Mol. H. F. in calories.	Compound.	Mol H F. in calories.	Compound.	Mol. H F. in calories.
Non-Mretals	$\times 10^{3}$		$\times 10^{3}$		$\times 10^{3}$
HCl gas	$22^{\circ} 0,{ }^{\prime}$,	CO_{2} from	973 , B.T.	$\mathrm{NH}_{4} \mathrm{Cl} . \mathrm{Aq}$	
$\mathrm{HCl} . \mathrm{Aq}$	$39.3, \mathrm{~T}$.	amorph. C	973, В.1.	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	283, T.B.
HBr gas.	$8.4, \mathrm{~T}$	CO_{2} from	9+3, B.	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot \mathrm{Aq}$	
$\mathrm{HBr} . \mathrm{Aq}$	$28 \cdot 6, \mathrm{~T}$.	diamond	9+3,	$\mathrm{NH}_{4} \mathrm{OH} \cdot \mathrm{Aq}$.	90, 3.
HI gas.	-6.1, T.B.	$\mathrm{B}_{2} \mathrm{O}_{3}$; amp. B.	$273, \mathrm{~B}$.	BaO .	126, T.
HI.Aq	+13.2, T.B.	$\mathrm{SiO}_{2} \mathrm{Aq}$; crys.	180, B.	$\mathrm{Ba}(\mathrm{OH})_{2}$	217, T.
HF	+ 38.5	$\mathrm{As}_{2} \mathrm{O}_{3} \cdot[\mathrm{Si}$	155, T.	BaCl_{2}	197, T.
$\mathrm{H}_{2} \mathrm{O}$ liq.	$68 \cdot 4, \mathrm{~T}$. $69^{\circ} \mathrm{O}, \mathrm{B}$.	$\mathrm{As}_{\mathrm{CCl}_{4} \mathrm{O}_{5}}^{\mathrm{Cl}_{4}}$ from	219,	$\begin{aligned} & \mathrm{BaCl}_{2}^{2} \mathrm{Aq} \\ & \mathrm{Bi}_{2} \mathrm{O}_{3} \end{aligned} .$	$\begin{aligned} & 199 \cdot 1, \mathrm{~T} . \\ & 20 \end{aligned}$
gas	$58 \cdot \mathrm{I}, \mathrm{B}$.	diamond		BiCl	91, 1
$\mathrm{H}_{2} \mathrm{O}_{2}$. Aq	47°	SbCl_{3} solid	9r.4, T.	$\mathrm{Cd}(\mathrm{OH})_{2}{ }^{\circ} \cdot{ }^{\text {a }}$	66, T .
$\mathrm{H}_{2} \mathrm{~S}$ from		SbCl_{5} liq.	105, T.	$\mathrm{Cd}+\mathrm{O}+\mathrm{H}_{2} \mathrm{O}$)	
rhombic S. .		CS_{3} from		CdCl_{2}	93, T.
NH_{3}	12.	diamond \&	-19, B.	$\mathrm{CdSO}_{4}{ }_{3}{ }^{-1}$	222, T.
AsH_{3}	$-36 \cdot 7$	rhombic S..		$\left.\mathrm{CdSO}_{4} .8 / 3 \mathrm{H}_{2} \mathrm{O}\right\}$	$+2 \cdot 66, \mathrm{~T}$.
SbH_{3}	-87, ${ }^{25}$ B.	$\left.\begin{array}{l}\mathrm{C}_{2} \mathrm{~N}_{2} \\ \text { from diam. } \\ \\ \text { gren }\end{array}\right\}$	$-74, \mathrm{~B}$	${ }_{\text {on sol. in }} \mathrm{CdSO}_{4} \cdot \mathrm{Aq}$)	
$\mathrm{SO}_{2} \mathrm{SiH}_{4}$ from	25	from diam. .	193, T.	$\mathrm{Cs}_{2} \mathrm{O}$. ${ }^{\text {a }}$.	
rhombic S .	70	$\mathrm{H}_{2} \mathrm{SO}_{4}$. Aq	193,	CaO	131, T.
SO_{3} liq. from		from rhonbic	210, T.	"', Moissan.	145
rhombic S.a	103	S . \quad.		$\mathrm{Ca}(\mathrm{OH})_{2}$,	229
$\mathrm{N}_{2} \mathrm{O}$	-19	HNO_{3} liq. -	$41^{\circ} 6, \mathrm{~B}$.	CaC_{2}	$-7 \cdot 25$
NO	$-21 \cdot 6, \mathrm{~T}$	$\mathrm{HNO}_{3} \cdot \mathrm{Aq}$.	49	CaCl_{2}	170
$\mathrm{N}_{2} \mathrm{O}_{3}$	-21.4, B.	HCN gas		CaCl_{2}. Aq.	$187^{\circ} 4, \mathrm{~T}$.
$\mathrm{NO}_{2} / 22^{\circ}$	$-17, \mathrm{~B}$.	from diam.	$-30 \cdot 5$	CaSO_{4}	318, T.
, 1550°.	$-7 \cdot 6, \mathrm{~B}$.	HCN liq.	-24°	$\mathrm{CaCO}_{3}{ }^{\text {a }}$	270, T.
$\mathrm{N}_{2} \mathrm{O}_{5}$ liq.	$3 \cdot 6$, T .	$\mathrm{H}_{3} \mathrm{PQ}_{4}$ liq.	302	$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ -	202, B.
$\mathrm{P}_{2} \mathrm{O}_{5}$ solid				CoO.	
$\mathrm{P}_{2} \mathrm{O}_{5} \cdot \mathrm{Aq} \cdot$.	405	Metals		$\mathrm{CoCl}_{2} \mathrm{CoSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	
$\left.\begin{array}{l} \text { CO from } \\ \text { amorph. C. . } \end{array}\right\}$	29, T.	$\mathrm{Al}_{2} \mathrm{O}_{3}$ AlCl_{3} Al^{2}	$\begin{aligned} & 380, \mathrm{~B} . \\ & 16 \mathrm{I} \end{aligned}$	$\begin{aligned} & \mathrm{CoSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} \end{aligned}$	234,
CO from		$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot \mathrm{Aq}$	880	CuO.	$37^{\prime 2}$, T.
diamond .\}	26.1, B.	$\mathrm{NH}_{4} \mathrm{Cl}{ }^{\text {a }}$.	$76 \cdot 3$, T.B.	CuCl_{2}	$51^{\circ} 6$

INORGANIC COMPOUNDS (contd.)

Compound.	Mol. H.F. in calories.	Compound.	Mol. H.F. in calories.	Compound.	Mol. H.F. in calories.
Metals (contd.)	$\times 10^{3}$		$\times 10^{3}$		$\times 10^{3}$
CuSO_{4}.	183. T.	MgCl_{2}	151, T.	AgCl	$29^{\circ} 2$, T.B.
$\mathrm{CuSO}_{4} \cdot \mathrm{Aq}$	198.8, T	MgSO_{4}	302, T.	$\mathrm{Na}_{2} \mathrm{O}$	91 to 100
$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$	-2'75	$\mathrm{MgSO}_{4} \cdot \mathrm{Aq}$	322	NaHO	102.3, T.13.
on sol. in Aq	8.8,		91	$\underset{\mathrm{NaCl}}{\mathrm{NaHO}} \mathrm{Aq}$	112.2, T.B.
AuBr AuCl_{3}	- 23.8 T.	${ }_{\text {MnCl }}{ }^{\text {H2 }}$	112	NaC	97.8, T.В.
$\mathrm{FeO}{ }^{\text {a }}$	$64^{\circ} 6$	HgO	21°	$\mathrm{Na}_{2} \mathrm{SO}_{4}$.	17, 32 . 3 , T.13.
$\mathrm{Fe}_{2} \mathrm{O}_{3} / 400^{\circ}$.	196	$\mathrm{Hg}_{5} \mathrm{SO}_{4}$	175	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	272, T.B.
Le Chatelier		HgCl	$31 \cdot 3$	SrO.	130, T.B.
$\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$.	240	HgCl_{2}	53°	$\mathrm{Sr}(\mathrm{OH})_{2}$	217, B.
$\mathrm{FeSO}_{4} \cdot \mathrm{Aq}$	236	NiO	$59^{\circ} 7$	SrCl_{2}	18\%, Т.В.
FeCl_{3}	96, T.	NiCl_{2}	$74.5, \mathrm{~T}$.	$\mathrm{SrCl}_{2} \cdot \mathrm{Aq}$	196, T.
PbO .	$50 \cdot 3$,	$\mathrm{NiSO}_{4} \cdot \mathrm{Aq}$	22, , T.	$\mathrm{Tl}_{2} \mathrm{O}$.	42:2, T.
PbO_{2}.	624	PtCl_{4}	59.4	TICl.	48.6, T.
PbCl_{2}	83, T.	$\mathrm{K}_{2} \mathrm{O}$.	97	$\mathrm{Tl}_{2} \mathrm{SO}_{4}$	22 I , T.
PbSO_{4}	216, T.	KHO	Io4, B.T.	SnO.	
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$	105.5	KHO.Aq	117, B.T.	SnCl_{2}	81, T.
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$. A_{7}	979	$\mathrm{KCl}^{\text {. }}$	106, B.T.	SnCl_{4}	
$\mathrm{Li}_{2} \mathrm{O}:$.	140	$\mathrm{KCl} . \mathrm{Aq}$	Ior $6, \mathrm{~T}$	ZnO.	$85^{\circ} 4, \mathrm{~T}$.
LiOH	111	KNO_{3}.	II9, B.T.	$\mathrm{ZnCl}_{2} \cdot{ }^{\circ}$	$97 \% 3$, T.B.
${ }^{\mathrm{LiCl}}$.	94, T.	$\mathrm{K}_{2} \mathrm{SO}_{4}$.	344, T.B.	$\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{Aq}$	132
$\mathrm{LiCl}^{\text {LiAq }}$.	1024	$\mathrm{Ag}_{2} \mathrm{O}$	$5^{\circ} \mathrm{g}, \mathrm{T}$.	ZnSO_{4}	2303, T.B.
$\xrightarrow{\mathrm{Li}_{2} \mathrm{SO}_{4}} \mathrm{LiNO}_{3}$	334, T.		7, B.	$\mathrm{ZnSO}_{4} \cdot \mathrm{Aq}$	$2+8 \cdot 7$
LiNO3 MgO.	112, T. 143, B.	$\mathrm{AgNO}_{3} \mathrm{AgNO}_{3} \cdot \mathrm{Aq}$	28.7, T.B $23 \cdot 3, \mathrm{~T}$.	$\left\{\begin{array}{c} \mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O} \\ \text { on sol. in Aq } \end{array}\right\}$	$-4 \cdot 26$

MOLECULAR HEAT OF NEUTRALISATION

Unit-the gram calorie (at 15° to 20°) per gram molecule of base. Thus $\mathrm{KOH} \cdot \mathrm{Aq}+\mathrm{HCl} \cdot \mathrm{Aq}=\mathrm{KCl} \cdot \mathrm{Aq}+\mathrm{H}_{2} \mathrm{O}+13,750$ calories. Thomsen ($=\mathrm{T}$.) observed at 18° to $20^{\circ} \mathrm{C}$., and the final dilution was 3600 gms . (7200 for Na salts) per gm . mol. of base. Berthelot ($=$ B.) used at least 2000 gms . of $\mathrm{H}_{2} \mathrm{O}$ per 17 gms . of hydroxylion, - HO.

Base.	HCl	HF	HNO_{3}	HCN	$\frac{1}{2} \mathrm{H}_{2} \mathrm{SO}_{4}$	$\frac{1}{2} \mathrm{H}_{2} \mathrm{CO}_{3}$	$1 \mathrm{H}_{3} \mathrm{PO}_{4}$	10xali
1 NaOH	$\begin{gathered} \times 10^{3} \\ 13 \cdot 74, \mathrm{~T} . \\ 13 \cdot 7, \mathrm{~B} . \end{gathered}$	$\begin{gathered} \times \mathrm{IO}^{3} \\ 16 \cdot 3, \mathrm{~T} . \end{gathered}$	$\begin{array}{r} \times 10^{3} \\ 13 \cdot 7, \mathrm{~T} . ; \\ 13 \cdot 5, \mathrm{~B} \end{array}$	$\begin{gathered} \times 10^{3} \\ 2.8 \end{gathered}$	$\begin{array}{r} \times 1 \mathrm{I}^{3} \\ 15 \cdot 64, \mathrm{~T} . \end{array}$	$\begin{gathered} \times 10^{3} \\ 10 \cdot 1, \mathrm{~T}, ; \\ 10^{\circ} 2, \mathrm{~B} . \end{gathered}$	$\begin{gathered} \times 10^{3} \\ 14 \cdot 8, \mathrm{~T} . \end{gathered}$	$\begin{array}{r} \times 10^{3} \\ 13 \cdot 8, T . \end{array}$
2 NaOH					$31.38 \ddagger$, T.	$202 \S, T .$	27.1*, T	28.3,T.
${ }_{\text {I }}^{\text {I } \mathrm{KOOH}}$	$13.85, \mathrm{~T}$, 137 T,	${ }_{16 \cdot 1}^{16.4}$		$2 \cdot 93$ $2.8, \mathrm{~T}$.	$\begin{aligned} & 15 \cdot 6+\text {, T. } \\ & 157, \mathrm{~T} . \mathrm{B} . \end{aligned}$		-	
	13.8, 13.6, B. 12.		$138,1$.					138, ${ }^{\text {c }}$
${ }^{1} \mathrm{NH}_{4} \mathrm{OH}$.	$\begin{gathered} 12 \cdot, \mathrm{~T} . ; \\ 12 \cdot 4, \mathrm{~B} . \end{gathered}$	$15 \% 2$	12.3, T.	$13, \mathrm{~B}$.	14*3, T.B.	$\begin{aligned} & 8 \cdot 4, \mathrm{~T} . ; \\ & 5 \cdot 3, \mathrm{~B} . \end{aligned}$	13.5 , B.	127
$\frac{1}{2} \mathrm{Ca}(\mathrm{OH})_{2}$	14.O, B.	$18.4 \dagger$	13*9, B.	3.2	15.6, T.	$9.3, \dagger$ T. ;	-	-
$\frac{1}{2} \mathrm{Sr}(\mathrm{OH})_{2}$.	13.8, T.	$17.8 \dagger$	13*9, B.	$3 \cdot 15$	$15^{\circ} 4$			
$\frac{1}{2} \mathrm{Ba}(\mathrm{OH})_{2}$	13.9, B.	$16 \cdot 1$	$14^{1.1}$, T.;	$3 \cdot 15$	18.4 , В.Т.	IIO, †T.B.	-	
$\begin{aligned} & \frac{1}{2} \mathrm{Mg}(\mathrm{OH})_{2}^{2} \mathrm{Cu}(\mathrm{OH})_{2} \end{aligned}$	$\begin{array}{r} 13 \cdot 8, \mathrm{~B} . \\ 7.5, \mathrm{~T} \end{array}$	$\begin{aligned} & 15 \cdot 2 \\ & 10^{\circ} 1 \end{aligned}$	$13.8, \mathrm{~T}$	1•5	$\underset{9^{15.3}}{9.2}, \text { B.T }$	$8.95,+$ B.	-	-

$*{ }_{3} \mathrm{NaOH}$ gives $34^{\circ} \mathrm{O} \times 10^{3}, \mathrm{~T}$. $\quad+$ Base in solid state. $\ddagger \mathrm{IH}_{2} \mathrm{SO}_{4}$. $\S \mathrm{IH}_{2} \mathrm{CO}_{3}$.

HEATS OF COMBUSTION AND FORMATION OF CARBON COMPOUNDS, COAL, ETC.
Molecular heats of formation (H.F.) of organic compounds are deduced from their heats of combustion (H.C.), by subtracting the Jatter from the heat generated on burning the carbon and hydrogen contained in the compound. Experimental errors in the H.C. thus become magnified in the H.F. Heats of combustion determined by Thomsen are for the vapour of the compound at $18^{\circ} \mathrm{C}$.; for the liquid the H.C. and H.F. would be greater by the latent heat of evaporation. Thomsen assumes H.F. of CO_{2} from amorphous C as $=96,960$ cal.; of water as 68.360 cal. per gm. molecule. For H.F. of inorganic compounds, see p. 62.

The H.C. and H.F. of carbon compounds is an additive property (see Thomsen's "Thermochemistry"). Berthelot's bomb calorimeter has been of considerable importance in the modern experimental side of the subject.

Unit-the gram calorie (at 15° to 20°) per gram molecule.
Example. 16 gms . of methane, CH_{4}, give out 212,000 gram calories of heat when burnt at constant pressure, to water and CO_{2} at $18^{\circ} \mathrm{C}$.
(T., Thomsen, "Thernochemistry;" B., Berthelot.)

Compound.	H.C.	H.F.	Compound.	H.C.	H.F.
	$\times 10^{3}$	$\times 10^{3}$		$\times 10^{3}$	$\times 10^{3}$
Methane, CH_{4}	212, T. $\}$	21.7	Me. a acetate, $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$	399, T.	$96 \cdot 7$
Methane, CH_{4}	213, B. $370, \mathrm{~T}$.	217	Carb. bisulphide, CS_{2}	265, T.	-26
Ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$	372, B. $\}$	28.6	Methylamine, ${ }^{\text {D }} \mathrm{CH}_{5} \mathrm{~N} \mathrm{H}_{7} \stackrel{\mathrm{~N}}{ }$	250, T.	9.5 12.7
Propane, $\mathrm{C}_{3} \mathrm{H}_{8}$	529, T.	35^{1}	Aniline, $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}$	838, T.	-174
Acetylene, $\mathrm{C}_{2} \mathrm{H}_{2}$	$310, \mathrm{~T}$. 314	$-47 \cdot 8$	Pyridine, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$.	$675, \mathrm{~T} .$	-1944
Ethylene, $\mathrm{C}_{2} \mathrm{H}_{4}$	314, $333, \mathrm{~T}$.	-478 -2.7	Sugar, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11} \cdot$ Illuminating gas per	1364 5600 to	
Benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$	799, T.	-125	cub. metre . . .	6500	
Naphthalene, $\mathrm{C}_{30} \mathrm{H}_{8}$	1239	-125	Coal (anthracite) . .	7.6 to	per gm.
Toluene, $\mathrm{C}_{7} \mathrm{H}_{8}$	956, T.	-3.5		$8 \cdot 4$	
Me. alcohol, $\mathrm{CH}_{4} \mathrm{O}$ ($\mathrm{CH}_{3} \mathrm{Cl}$	182, T.	51.4 22.6	Coal (brown) Coke.	47 6.9	
Chloroform, CHCl_{3}.	107, T.	$2{ }^{\circ} \mathrm{I}$	Paraffin oil.	$9 \cdot 8$	
Et. alcohol, $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	340, T.	58.5	Wood	$\{3.9$ to $\}$	
${ }_{\text {Et. }}^{\text {Et. ether, }} \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	660, T.	70			" "
Acetic aldehyde, $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$	334, 28.	48.7	Casein .	$5 \cdot 86$	
Formic acid, $\mathrm{CH}_{2} \mathrm{O}_{2}$	$69^{\circ} 4, \mathrm{~T}$.	$95^{\circ} 9$	Flesh.	$5 \cdot 66$	", "
Acetic acid, $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$	$225, \mathrm{~T}$.	$105^{\circ} 3$	White of egg	$5 \cdot 67$	
Propionic acid, $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$	387, T.	1094	Yolk of egg	$8 \cdot 12$	
Me. formate, $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$.	241, T.	89.4	Hæmoglobin	$5{ }^{\circ} 9$	

MOLECULAR HEAT OF DILUTION

The heat set free or absorbed on diluting a gram molecule of liquid with water is the molecular heat of dilution: thus on diluting HCl to $\left(\mathrm{HCl}, 300 \mathrm{H}_{2} \mathrm{O}\right), 17,300$ calories per $36^{\circ} 5$ grams of HCl are set free ; diluting $2 \mathrm{NaCl}, n \mathrm{H}_{2} \mathrm{O}(n=20)$ to ($2 \mathrm{NaCl}, 100 \mathrm{H}_{2} \mathrm{O}$) absorbs 1060 cal. per $2 \times 58.65 \mathrm{gm}$. of NaCl . Unit-the gram calorie (at 15° to 20°) per gram molecule. (See Thomsen, "Thermochemistry.")

$\begin{gathered} \mathrm{HCl} \\ \mathrm{n}=0 \end{gathered}$	$\begin{aligned} & \mathrm{HNO}_{3} \\ & \mathrm{n}=0 \end{aligned}$	$\begin{aligned} & \mathrm{H}_{2} \mathrm{sO}_{4} \\ & \mathrm{n}=0 \end{aligned}$	$\begin{aligned} & \mathrm{NaHO} \\ & \mathrm{n}=3 \end{aligned}$		$\mathrm{H}_{3}{ }^{*}$		$\begin{aligned} & \mathrm{NaCl} \\ & =20 \end{aligned}$		$\begin{aligned} & \mathrm{JaNO} \\ & =12 \end{aligned}$		$\begin{aligned} & \mathrm{Ta}_{2} \mathrm{SO}_{4} \\ & =50 \end{aligned}$	$\begin{aligned} & \mathrm{ZnCl}_{2} \\ & \mathrm{n}=5 \end{aligned}$	$\begin{gathered} \mathrm{Zr}\left(\mathrm{NO}_{3}\right)_{2} \\ \mathrm{n}=10 \end{gathered}$
	H_{2}	$\mathrm{H}_{2} \mathrm{O}$	${ }_{2} \mathrm{O} \times 1$	$\mathrm{H}_{2} \mathrm{O}$									
13.37	${ }_{1}{ }_{3}$		$5{ }_{5}{ }^{1} 13$		1.26	100	-1.06	50	- ${ }^{1} 2.26$	100	-665	10	$15 \quad 91$
211.36	56.6	513.1	72.9		${ }^{1} 285$	200	-1.31	100	- 329	200	-1. 13	20 3:15	201.15
514.96	107.32	$49{ }^{16 \%}$	$93 \cdot 1$.	$5 \cdot 8$	21	400	-1.41	200	-3.86	400	-1.38	$50.5 \cdot 32$	50 1.20
$5017 \cdot 1$	$207 \cdot 46$	199 I 7 'I	25 3.26	95	-02			400	-4.19	800	-1.48	$1006 \cdot 8 \mathrm{E}$	100 i. II
$30017 \cdot 3$	$3207 \cdot 491$	$160017^{\circ} 9$	$2002 \cdot 94$	110	. 0	-						4008.02	200 - 07

[^9]
ENERGY AND WAVE-LENGTH OF FULL RADIATION

The radiation from a full or black body radiator depends both in quality and quantity upon the temperature. The total energy radiated (of all wave-lengths), from unit area in unit time, is given by Stefan's law, $\mathrm{E}=\mathrm{K} \theta^{4}$, where K is Stefan's constant and θ is the absolute temperature (see Optical Pyrometry, p. 47, and below).

The dependence of the quality on the temperature is expressed by Wien's displacement law, $\lambda_{m} \theta=$ const., where λ_{m} is the length of the particular waves which have maximum emissive power. Thus the emissive power E_{m} of the waves of length λ_{m}, varies as the 5 th power of the temperature (absolute) : $\mathrm{E}_{m} \theta^{-5}=$ const.

The emissive power of some particular wave-length λ is expressed accurately by

$$
\mathrm{E}_{\lambda}=\mathrm{C}_{\lambda}-5 /\left(e^{a / \lambda \theta}-1\right) \cdots: \cdot \text { Planck's formula }
$$

where $C=353$ erg. $\cdot \mathrm{cm} .^{2} \mathrm{sec}^{-1}, a=1.43 \mathrm{I} \mathrm{cm} .-\mathrm{deg}$., and e is the base of Napierian logs.
At low temperatures or for short wave-lengths ($\lambda \theta<3 \mathrm{~cm}$.-deg.) Planck's formula becomes (to $.8 \%$ at least)-

$$
\mathrm{E}_{\lambda}=\mathrm{C}_{\lambda-5} e^{-a / \lambda \theta} \quad \therefore \text { Wien's formula (see p. 47) }
$$

For long waves and high temperatures ($\lambda \theta>730 \mathrm{~cm}$. deg.), we have (to $\mathrm{I} \%$ at least) -

$$
\mathrm{E}_{\lambda}=\mathrm{C}^{-4} \theta_{c}-a / a \text { Rayleigh's formula }
$$

(See Preston's "Heat," 2nd edit. ; Kayser's "Spectroscopie," II. ; Lorentz's "Theory of Electrons," 1910.)

WIEN'S DISPLACEMENT LAW
$\lambda_{m} \theta=$ const. $=$ A. (See above). λ is measured in cms.

\mathbf{A}	Observer.
$\cdot 2940$	Lummer and Pringsheim, I 899
$\cdot 2888$	Paschen and Wanner, B. B., I 899
$\cdot 2902$	Wanner, 1900
$\cdot 2940$	Paschen, A. d. P., 190I
$\cdot 2890$	Kubens and Kurlbaum, A.d. P., 190I

STEFAN'S LAW
Total radiation from a full radiator $=\mathrm{K} \theta^{4}$ (see above). K is in erg $\mathrm{cm} .^{-2}$ sec..$^{-1}$ $\mathrm{deg}^{-4} . \mathrm{K}=5.72 \times 10^{-5}$ (Millikan, 1917).

K	Observer.
5.45×10^{-5}	Kurlbaum, 1912
$5 \cdot 18$	Lummer and Pringsheim, A.d. P., 1901
	Shakespeare, 1911

A. d. P., Ann. der Phys. ; B. B., Berlin Ber.; C. R., Compt. Rend.

SOLAR CONSTANT AND TEMPERATURE OF SUN

The solar constant S is the energy received from the sun by the earth (at its mean distance) per sq. cm . in unit time, corrected for the loss by absorption in the earth's atmosphere.

The determination of the absorption loss is difficult ; it is best derived from simultaneous observations at high and low stations.

Langley and Abbot ("Smithsonian Reports," 1903 et seq.) give the following relation between atmospheric absorption and wave-length :-

Wave-length ($\AA . \mathrm{U} .=10^{-8} \mathrm{~cm}$.)	4000	6000	8000	10,000	12,000
Fraction transmitted	49	74	85	-89	'91

If R is the energy radiated in unit time from a sq. cm . of the sun's surface, then

$$
R=\left\{\frac{\text { earth's solar distance }}{\text { sun's radius }}\right\}^{2} \times S=\left\{\frac{9^{.28} \times 10^{7}}{4.33 \times 10^{0}}\right\}^{2} \times S=46,000 S
$$

Assuming the sun to be a full or black body radiator, its "effective" absolute temperature θ may be deduced either from (i) Stefan's law, $R=K\left(\theta^{4}-T^{4}\right)$, where K is Stefan's constant (see above) and T is the earth's absolute temperature, or (2) Wien's displacement law, $\theta \lambda_{m}=$ const. (see above).

Langley and Abbot (ref. above) find the distribution of the energy of solar radiation among the different wave-lengths (λ) to be as follows:-

Wave-length ($\AA . \mathrm{U}$.$) .$	400	4500	5000	5500	6000	7000	8000	10,000	12,000	14,500	21,000
Relative energy, E.	15%	18.4	19	16	14	II	8.8	$5 \cdot 4$	3.2	2	6

λ for $\mathrm{E}_{\text {max }}=4900 \times 10^{-8} \mathrm{~cm}$. Taking Wien's displacement law to be $\theta \lambda_{\text {max }}=29$, and assuming the sun to be a full radiator, its temperature $\theta=5920^{\circ}$ absolute.

SOLAR CONSTANT AND TEMPERATURE OF THE SUN (contd.)

The values of S below are expressed in both (1) calories per min. per $\mathrm{cm} .{ }^{2}$, and (2) watts per $\mathrm{cm} .^{2}$ (I calorie per $\mathrm{sec} .=4.18$ watts). The sun's mean temp. θ is in degrees C. absolute. Abbot and Fowle find the solar constant varies by about 8%. (See Poynting and Thomson's "Heat ; Chree, Nature, 82, 2090; Report (1910) of thie International Union for Solar Research ; and "Smithsonian Reports.")

Solar Const.		$\begin{aligned} & \text { Sun's } \\ & \text { Temp. } \end{aligned}$	Account.	Observer.
$\begin{aligned} & \text { cals. } \\ & \min ^{-1} \\ & \mathrm{~cm} . .^{-2} \end{aligned}$	watts $\mathrm{cm} .^{-2}$			
-	-	Abs. ${ }_{\text {a }}{ }^{\text {a }}$	Comparison with const. temp. Atmos. absorp. taken as 29%	Wilson, 1902
-	- 5	5920	Using Wien's displacement law (above)	Langley \& Abbot, '03
$2 \cdot 25$	'154		Gorner Grat, Switzerland Natl. Phys. Lab., England. Atmos.	Scheiner, 1908 Harker \& Blackie, '08
$2 \cdot 38$	-166	5630	absorp. taken as 29% Mt. Blanc. Comparison with const.temp.	\{Féry. \& Millochau
	-	5360)	Atmos. absorp., 9% with zenith sun	FFéry, 1909
-	- 16	5630	Mt. Blanc. Atmos. absorp., 3.4%	Millochau, 1909
$2 \cdot 1$	-146	5970	Washington (sea-level) and Mt. Wilson (6000 ft .)	Abbot \& Fowle, 'o9
$2 \cdot 1$	-146	5970 ${ }^{\text {c }}$	Review of previous work	Bellia, 1910
1*925*	- 134	$5840 \dagger$	Mt. Wilson (6000 ft .) and Mt. Whitney ($14,500 \mathrm{ft}$.)	Abbot, 1910

* Mean value for period 1904-9 (Nature, 1911).
\dagger Calculated from S, taking Stefan's const. as 5.3×10^{-12} watts $\mathrm{cm} .^{-2} \mathrm{sec} .^{-1} \mathrm{deg} .^{-4}$.

THE CRYOSCOPIC CONSTANT

The cryoscopic constant, K, would be the depression of the freezing-point of a solvent when the molecular weight in grams of any substance (which does not dissociate or associate) is dissolved in 100 grams of the solvent, supposing the laws for dilute solutions held for such a concentration (Raoult, 1882). Van't Hoff (1887) showed that $K=R \theta^{2} /(100 L)$, where $R=$ the gas constant (see p. 5), θ the absolute freezing-point of the solvent, L its latent heat of fusion in ergs. Example.-For I gram-molecule of solute in 100 gms . of water-

$$
\mathrm{K}=8.315 \times 10^{7} \times\left(273^{.1}\right)^{2} /\left(79.67 \times 4.184 \times 10^{9}\right)=18.60
$$

(See Whetham's "Theory of Solution," p. 149.)

Solvent.	m.	Lat. ht. (cals.)		K	Solvent.	M.	Lat. ht. (cals.)	K	
			Calcd.	Obsd.				Calcd.	Obsd.
Water	$0^{\circ} \mathrm{C}$.	79.6	$18 \cdot 6\{$	$18.58, \mathrm{G}$. 18.52^{*}	Benzene	$5^{\circ} \mathrm{C}$.	$\begin{aligned} & 29 \cdot 1, \text { P.W. } \\ & 30^{\circ} \mathrm{I}, \mathrm{~F} . \end{aligned}$	53.3 51.6	$\begin{aligned} & \text { 49, R. } \\ & 5 I^{\circ}, \mathrm{P} . \end{aligned}$
$\mathrm{H}_{2} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$	8.4	317 , B.	50	48, L.	Formic acid	8	$57^{\circ} 4, \mathrm{Pe}$.	${ }_{27}{ }^{5} 5$	28, R.
$\mathrm{SbCl}_{3} \cdot{ }^{\text {a }}$	$73^{\circ} 2$	13.4, T.	174	184, T.	Phenol .	40	24'9, P.W.	78.6	$72 \cdot 7, \mathrm{E}$.
Acetic acid	17	43'7, Pe.	38.5	39, R.	p. Xylol	16	$39^{\circ} 3, \mathrm{C}$.	$42 \cdot 5$	43, P.M.

[^10]
VELOCITY OF SOUND

The velocity of sound（longitudinal waves）in a body，$V=\sqrt{E / p}, E$ being the elasticity，and ρ the density．In gases and liquids E is the adiabatic volume elasticity；in isotropic solid rods or pipes E is Young＇s Modulus．For gases $\mathrm{V}=\sqrt{\gamma \mathrm{P} / \rho}, \mathrm{P}$ being the pressure，and γ the ratio of the specific heat of the gas at constant pressure to that at constant volume．For values of γ ，sce p． 58 ．

For moderate temperature variations，the velocity of sound in gases is given by $\mathrm{V}_{t}=\mathrm{V}_{0}\left(\mathrm{I}+\frac{1}{\frac{1}{2}} a t\right)=\mathrm{V}_{0}+6 \mathrm{I} t$ in cms ．per sec．for dry air $\left(\alpha={ }^{\circ} 00367\right)$ ．

The velocity of sound decreases with decreasing intensity down to the normal value．In gases in tubes the velocity increases with the diamter up to a limiting value for free space．The values below are for free space．Barton＇s＂Sound＂and Poynting and Thomson＇s＂Sound＂may be consulted．［r foot $=30.48 \mathrm{cms}$ ．］

Substance．	Temp．	Velocity．	Observer．
Gases－ Air (dry)	$0^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{cms.} . \mathrm{sec} \text {. } \\ & (3.3133) \times 10^{4} \end{aligned}$	
＂	0	3.3136 ＂	Calcd．$/ \gamma=$ Violle， 1900
＂	0	3.3132 ＂	Stevens， 1900
＂	0	3.3129 ＂	Hebb， 1905
＂\quad－\quad.	0 -456	$3.3192 *$	Thiesen，1908 \ddagger
＂	－ 45.6	3.056 ＂	Greely， 1890
＂	－1824	1.815 3.865	Cook， 1906
＂	100	3.865 ＂	Stevens， 1900
＂．．．	1000	${ }_{7} 5.050$	＂
＂（Krakatoa wave）	100	$\begin{array}{ll} 7 \circ \\ 3.21 \end{array} \quad ",$	1883
＂，Sound－waves from	sparks 0	$3.50-+45$＂，\dagger	Töpler， 1908
Hydrogen ．．．	0	12.86 ＂，	Zoch， 1866
Oxygen．．	0	3.172 ＂	Dulong， 1829
N＂\＃＊	-184.7	1.737 ＂	Cook， 1906
Nitrous oxide， $\mathrm{N}_{2} \mathrm{O}$	0	2.60 ＂	Wullner， 1878
Ammonia， NH_{3} ．	0	$4 \cdot 16$＂	＂
Carbon monoxide	10－24	3.371 ＂	
Carbon dioxide ．	10－24	2.573 ＂	Low， 1894
Coal－gas dioxide．	0	$4.9-5.15$ 2.09	Masson， 1857
Water－vapour	0	$\begin{array}{ll} 2.09 \\ 40 & " \end{array}$	
＂（satd．）	110	$4^{\cdot 13}$	Treitz， 1903
Liquids－			
Water	8.1	14.35×10^{4}	Colladon \＆Sturm， 1827
＂•	4.	13.99 ＂	Martini， 1888
＂${ }^{\text {a }}$－	25	$14.57 \quad \text { " }$	
＂＂（sea）Explosion	waves 18	$17 \cdot 3-20 \cdot 1, \neq t$	Threlfall \＆Adair， 1889
Alcohol（abs．）， $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	$8 \cdot 4$	12.6 ＂	Martini， 1888
Ether，$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$ ．	0	114%	－
Turpentine， $\mathrm{C}_{10} \mathrm{H}_{16}$ ．	3.5	$13 \% 7$	＂

＊Free from CO_{2} ．\dagger The range of speeds is given by varying intensities．\ddagger Reichsanstalt．
The values for metals are due to Wertheim， 1849 ；Masson， 1857 ；and Gerossa， 1888.

Solid．	Velocity ems．$/ \mathrm{sec}$ ．	Solid．	Velocity cms．／sec．	Solid．	Velocity cms．／sec．
Aluminium．	$51^{\circ} 0 \times 10^{4}$	Lead．	12.3×10^{4}	Brass	c． 36.5×10^{4}
Cadmium	$23^{1} 1$	Nickel ．		Deal（along ．	49－50＂
Cobalt ．	$47^{\circ} 2$	Platinum ．	26.8 ＂	grain)	
Copper ：	$39^{\circ}{ }^{\circ}$	Silver ．	$26^{\circ} 4$＂	Fir \because	42－53
Gold（wrought）	${ }^{20 \cdot 8}{ }^{49-51 "}$	Tin	24．9＂	Mahogany＂	$41-46$
Iron（wrought） $\prime \prime ⿰ ㇒ ⿻ 土 一 ⿰ ⿷ 匚 一 亅$ （cast）．	49－5．${ }^{\text {c }}$ ， c． 43	Zinc．${ }_{\text {Glass（suia）}}$	$36 \cdot 8 "$ $50-53$	Oak Pine	$\left\lvert\, \begin{array}{ll} 40-44 \\ c .33 \end{array}\right.$
Steel ．\quad cast）．	c． 43 $47-52 "$	\％（flint）	c． 40 ＂ c．	Indiarubber＂	$\stackrel{.0}{.3} 50$

VELOCITY (IN AIR) AND PRESSURE Koch (1907).			SENSITIVENESS OF EAR TO PITCH Rayleigh (1907).		ORGAN PIPES End Correction. For a pipe with a flange at the open end, the antinode is situated - 82 (radius of pipe) beyond end. With no flange, the end-correction is 57 (radius). (See Lamb's"Sound."		
Press. in atmos.	Relative Velocity of Sound.		Frequency.	Condensation for same audibility.			
	$0^{\circ} \mathrm{C}$	$3^{\circ} \mathrm{C}$					
25	1.000	.842 .831	$\begin{array}{r} 512 \\ 256 \\ 128 \\ 85 \end{array}$	$\begin{aligned} & 1 \\ & 1.6 \\ & 3.2 \\ & 6.4 \end{aligned}$	Wave-length. $\mathrm{L}=\text { length of pipe. }$ Closed pipe . . $4 \mathrm{~L}, \frac{4 \mathrm{~L}}{3}, \frac{4 \mathrm{~L}}{5}$, etc. Open pipe . $2 \mathrm{~L}, \frac{2 \mathrm{~L}}{2}, \frac{2 \mathrm{~L}}{3}$, etc.		
50	1.022	830					
100	1.064	-885					
150 200	$1 \cdot 132$ $1 \cdot 220$	I'047 I'239					
TRANSVERSE VIBRATIONS OF RODS L, length ; K , radius of gyration of crosssection ; E, Young's Modulus; p, density.					THE EAR		
					Shortest time perceivable by ear (Hill, 1908). Amplitude of faintest audible sound (Rayleigh, 1877) Ditto (Shaw, 1904)	. 007 sec .	
Both ends free	No. of Nodes.	Distance of Nodes from one end.		Frequency $\propto \frac{\mathrm{K}}{\mathrm{L}^{2}} \sqrt{\frac{\mathrm{E}}{\rho}}$			
		-224L; 776L				1.76	Ditto (Shaw, 1904)
	3			Pressure variation to which normal earcan respond (Abraham, 1907).	c. $4 \times 10^{-7} \mathrm{~mm}$		
	4	$\left\{\begin{array}{l} .094 \mathrm{~L} ; \cdot 356 \mathrm{~L} \\ \cdot 644 \mathrm{~L} ; 906 \mathrm{~L} \end{array}\right\}$			276	$\}^{\infty}$ mercury.	
One end fixed	0123			$\begin{gathered} 1 \\ 6.27 \\ 17.5 \\ 34.4 \end{gathered}$	Lower limit of audition in vibns./sec. Upperlimit of audition in vibns./sec. Extreme range of ear Musically available	$\begin{aligned} & \text { About } 30 . \\ & 24,000 \text { to } \\ & 41,000 . \\ & \text { c. } 1 \text { I octaves. } \\ & \text { c. } 7 \quad, \end{aligned}$	
			-644L				
Temp. correction of Frequency (n) of a Tuning-fork. (M'Leod and Clarke, 1880, and König)$n_{t}=n_{0}(\mathrm{I}-000 \mathrm{I} \mathrm{I} t)$							
					Highest pitch in piano Highest pitch in orchestra (piccolo d ${ }^{\nu}$). Lowest pitch in largest organs (64foot pipe)	3520	
					3520		
The pressure exerted by Sound waves has been measured directly up to $\cdot 24$ dyne $/ \mathrm{cm}^{2}$. (Altberg, 1903)							
					8		

FREQUENCY RATIOS OF MUSICAL SCALE

	$\stackrel{\text { c }}{\text { D }}$ h	$\underset{\text { Day }}{\substack{\text { D }}}$	$\stackrel{\mathrm{E}}{\mathrm{Me}}$	$\stackrel{\text { Fah }}{\text { F }}$	$\begin{gathered} \mathrm{G} \\ \mathrm{Soh} \end{gathered}$	$\stackrel{\text { A }}{\text { Lah }}$	$\stackrel{\text { B }}{\text { T0 }}$	$\stackrel{\text { c }}{\text { Doh }}$
Natural scale .	$\begin{gathered} 1^{\frac{9}{8}} \\ 1.000 \end{gathered}$	$\begin{gathered} 18 \\ \frac{9}{8} \\ 27 \\ 1 \cdot 125 \end{gathered}$	$\begin{gathered} \\ 5 \\ 40 \\ 30 \\ 1250 \end{gathered}$	$\begin{gathered} 5 \\ \frac{4}{3} \\ 32 \\ \mathbf{1} 333 \end{gathered}$	$\begin{gathered} \frac{3}{2} \\ 36 \\ 1.500 \end{gathered}$	$\begin{gathered} 5 \\ 40 \\ 1.667 \end{gathered}$	$\begin{gathered} 15 \\ 8 \\ 45 \\ 1.875 \end{gathered}$	$\begin{gathered} 18 \\ 2 \\ 48 \\ 2.000 \end{gathered}$
Equally tempered scale	1.000	$1 \cdot 122$	1.260	1335	1.498	1.682	1.888	$2 \cdot 000$
Standard forks (König) (marked $c^{\prime}=512$ and so on)	$\begin{gathered} c^{\prime} \\ 256 \end{gathered}$	$\begin{gathered} \mathrm{d}^{\prime} \\ 288 \end{gathered}$	$\begin{gathered} e^{\prime} \\ 320 \end{gathered}$	$\begin{gathered} \mathbf{f}^{\prime} \\ 34 I^{\prime} 3 \end{gathered}$	$\begin{aligned} & \mathrm{g}^{\prime} \\ & 384 \end{aligned}$	$\begin{gathered} a^{\prime} \\ 426^{\circ} 7 \end{gathered}$	$\begin{gathered} b^{\prime} \\ 480 \end{gathered}$	$\begin{gathered} c^{\prime \prime} \\ 512 \end{gathered}$

The French Standard, "Diapason Normal" of 1859 (which adopts a fork having $0^{\prime \prime}=522$ at $20^{\circ} \mathrm{C}$.) is coming into general adoption for organs and pianos in England, the Continent, and America, as the result of a makers' conference in 1899. Other scales in vogue are Concert Pitch ($\mathrm{c}^{\prime \prime}=546$), Society of Arts ($\mathrm{c}^{\prime \prime}=528$), Tonic Sol-fa $\left(c^{\prime \prime}=507\right)$, Philharmonic $\left(c^{\prime \prime}=540\right)$. (The "middle" c of the piano is c^{\prime}).)

VELOCITY OF LIGHT IN VACUO

Mean value in vacuo $=2.9986 \times 10^{\circ 0} \mathrm{~cm} . / \mathrm{sec} .=186,326 \mathrm{miles} / \mathrm{sec}$. For values of τ, the ratio between the E.M. and E.S. units, see below.

cm./sec.	Method.	Observer.	cm/sec.	Method.	Observer.
$\times 10^{10}$			$\times 10^{10}$		
3.07	Eclipse of one of	Römer, 1676	2.999 3.014	Rotating mirror	Michelson, 1879
2*998	Jupiter's moons	Fizeau, corrected	3.014 2.9985	Toothed wheel Rotating mirror	Young\& Forbes, 81 Michelson, 1882
2.986	Rotating mirror	Foucault, 1862	$2 \cdot 9986$		Newcomb, 1882
$3 \cdot 004$ 。	Toothed wheel	Cornu, 1878	$2 \cdot 9986$	Toothed wheel	Perrotin, 1900

VELOCITY OF LIGHT IN LIQUIDS

Liquid.	Vel. in vacuo Vel. in liquid	Refractive index for Na D line.	Method.	Observer.
Water ${ }^{\text {W }}$ -	$\begin{aligned} & 1.330 \\ & 17558 \end{aligned}$	$\begin{aligned} & 1.333 / 20^{\circ} \\ & 1.627 / 20^{\circ} \end{aligned}$	Rotating mirror	Michelson, 1883

VELOCITY OF HERTZIAN WAVES
(See Blondlot and Gutton, Rep. Cong. Phys., Paris, 1900.)

$\mathrm{cm} . / \mathrm{sec}$.	Observer.	cm./sec.	Observer.	$\mathrm{cm} . / \mathrm{scc}$.	Observer.
$\begin{aligned} & \times 10^{10} \\ & 2.989 \\ & 2.991 \end{aligned}$	Blondlot McClean	$\begin{aligned} & \times 10^{10} \\ & 3.003 \end{aligned}$	Trowbridge and Duane	$\begin{aligned} & \times 10^{10} \\ & 2.989 \\ & 2.991 \end{aligned}$	Saunders Mean

RATIO OF ELECTROMAGNETIC TO ELECTROSTATIC UNIT OF CHARGE

This ratio " v " is a pure number, and is numerically equal to $\sqrt{\mu k}$, i.e. on Maxwell's theory, to the velocity of electric disturbances, such as light and Hertzian waves, through a medium whose magnetic permeability is μ and specific inductive capacity k : (See pp. 7 and 84.) For the velocity of light, see above.

Most observers have used a "capacity method" of determining v. (See Gray, "Absolute Measurements; and Rosa, Bull. Bureau of Standards, 1907.)

v	Observer.	v	Observer.	v	Observer.
$\begin{aligned} & \times 10^{10} \\ & 2.063 \end{aligned}$		$\times 10^{10}$			
2.963	J. J. Thomson, 1883	2.997	Thomson and Searle, 1890	$\begin{aligned} & 3.001 \\ & 2^{2} \cdot 997 \end{aligned}$	Hurmuzescu, '96 Perot and Fabry
$\begin{aligned} & 2.982 \\ & 3.000 \end{aligned}$	Rowland, 1889 Rosa, 1889	3.009 .2 .093	Pellat, 1891 Abraham, 1892		Rosa \& Dorsey, 1907

PHOTOMETRIC STANDARDS

The Geneva Congress of 1896 proposed a set of units for measuring (1) luminous intensity, (2) flux (the "lumen"), (3) illumination (the "lux "), (4) brightness, and (5) quantity of light (see Electrician, July 14, 1911). The British unit of intensity is the "candle." The mean spherical candlepower of a light is the mean of the intensities measured in all directions from the light. The mean horizontal candlepower is the mean of all the intensities in a horizontal plane through the lamp.

The British "candle" is a spermaceti candle, $\frac{7}{8}$ inch in diameter (6 to the lb.) which burns at the rate of 120 grains per hour. This is, however, found to be an unsatisfactory standard, and in modern photometry the British unit is taken as being one-tenth part of the light given out by the Harcourt io candlepower Pentane lamp, burning at a pressure of 760 mms . mercury in an atmosphere containing 8 parts in 1000 by volume of water-vapour as measured by a ventilated hygrometer. The candlepower of this lamp

$$
=10+066(8-w)-008(760-H)
$$

where w is the number of parts in 1000 (by vol.) of water-vapour in air at a barometric pressure of H mms. of mercury.

The United States "candle" prior to April 1, 1909, was 1.6% greater than the British:

The French unit is the Bougie decimale, which is the 20th part of the light given out by a sq. cm . of platinum at its solidifying point. This is a difficult unit to reproduce, and the Carcel lamp burning colza oil is used in practice. The Carcel unit is taken (with some uncertainty) as 4% less than the Bougie decimale.

The German unit is the light given out by the Hefner lamp (which burns amyl acetate), burning at a pressufe of 760 mms . mercury in an atmosphere containing 8.8 parts in 1000 (by vol.) of water-vapour as measured by a ventilated hygrometer.

The National Physical Laboratory, the Bureau of Standards of America, and the Laboratoire Central d'Electricité of Paris have come to an agreement which involves the reduction of the old value of the American candle by 16%. They agree in future to employ as a common unit the proposed International candle = I British Pentane candle =1 American candle =1 French Bougie decimale = 10/9 German Hefner unit $=\cdot 104$ Carcel unit (see Paterson, Phil. Mag', 1909).

EFFICIENCIES OF VARIOUS LIGHTS

It has become customary to express efficiencies (or rather inefficiencies) in watts per candle. The value of a luminous efficiency cannot be properly appreciated without a knowledge of the distribution of the intensity. Estimates of the proportion of light energy to the total energy vary widely. S. P. Thompson (" Manufacture of Light") quotes from I part in 7000 for a gas flame to 1% for the most efficient lights.

The usual accepted "efficiencies" are given below in watts per mean spherical candlepower. They must only be regarded as approximate (see Solomon, "Electric Lamps," 1908).

Light.	Efficiency.	Light.	Efficiency.
Bat's-wing gas flame	c. 100	Tantalum lamps	1.7-2.1
Paraffin lamps	c. 50	Tungsten (osram, etc.) lamps	13
Welsbach mantle, etc.	c. 15	Open arc lamps.	$\mathrm{I}^{1} \mathrm{I}-\mathrm{I}^{\circ} 4$
High-pressure gas	c. 8	Enclosed arc lamps.	$2 \cdot 3$
Carbon filament lamps.	3.5-4.5	Yellow flame arc lamps	4
Metallized carbon filament lamps		Mercury vapour lamps.	3-4
Nernst lamps .	2.1-2.4		

In high-grade standard photometry the Lummer Brodhun photometer head is usually employed. A unit of light may be maintained and reproduced with an accuracy of the order of $\frac{1}{10} \%$, by means of sets of properly seasoned glow lamps.

The candlepower of a carbon glow lamp varies as the 6th power (approx.) of the voltage ; of a metallic filament lamp, as the 3.6 th power.

A candle is visible at about a mile on a clear dark night. The energy in the luminous radiation from a standard candle is about $5 \times 10^{5} \mathrm{ergs} / \mathrm{sec}$. (Rayleigh, "Collected Papers"), whence the energy falling on I sq. cm . at a distance of I metre would be 4 ergs per sec. Angström (1902) gets values about double these.

71
 GASEOUS REFRACTIVE INDICES

GASEOUS REFRACTIVE INDICES AND DISPERSIONS

Dispersion.-Cauchy's equation is $\mu-\mathrm{I}=\mathrm{A}\left(\mathrm{I}+\mathrm{B} / \lambda^{2}\right)$, where μ is the refractive index for the wave-length λ; A and B are constants. B is the coefficient of dispersion.

The refractivity $(\mu-1)=A$, when $\lambda=\infty$. The values of A and B are for wave-lengths measured in cms. The refractive indices are mostly for the sodium D line $\left(\lambda=5893 \times 10^{-8} \mathrm{~cm}\right.$.). The values of μ are reduced to a standard density at 0° and 760 mms . by assuming that $(\mu-I) / \rho$ is a constant for each gas, ρ being the density. Cauchy's formula is in general inadequate over large dispersions. (See Cuthbertson, Science Progress, 1908 ; and Proc. Eo Trans. lioy. Soc. for 1905 et seq.)

Gas or Vapour.	Refractive Index μ for Na D line.			uuchy	Constan	nts.	Observer.				
				A.		B.					
	1.0002918		$23.71 \times$	$\times 10^{-5}$	$5 \cdot 67$		Scheel (Reichsanstalt), 1907				
Hydrogen	1.0001384		13.58	-	752	,	Burton; Cuthbertson \& Metcalfe, 1007				
Helium. Neon d	1.0000350		3.48 6.66			"	Burton; Cuthb	ertson \& M	Metcalfe,1907		
Argon	1.0002837		27.92					,			
Krypton	I'0004273		41.89	",	$6 \cdot 97$		\&	uthbert	08		
Xenon .	$1 \cdot 000702$		68.23	碞	$10 \cdot 14$						
Fluorine Chlorine	r.000195ro007681						erts	\& P	ux,		
Bromine	1.001125										
Iodine .								(on,			
Oxygen .	$1.00192 \dagger$ 1•000272		26.63		50			schler, 1			
Sulphur.	1.000272		104.6	"			berts	\& Met	,		
Selenium	I'001565										
Tellurium	1.002495										
Nitrogen	1000297		$29^{\circ} \mathrm{O}$	6			(ichsanst	, 190		
Phosphoru	$1 \cdot 001212$		116.2	"	$5 \cdot 3$		hbert	\& Met	,		
Arsenic.	1.001552						"				
Zinc	1.002050						"				
Cadmium Mercury	1•002675 r.000933										
Mercury											
Gas or Vapour.		$\left\lvert\, \begin{array}{l\|} \text { Refractive } \\ \text { Index } \mu \text { for } \\ \text { Na D line. } \end{array}\right.$		- Observer.		Gas or Vapour.		ve			
		Index μ for	Observer.								
				I.000257.		Mascart, ${ }^{\prime} 8$		Tellurium tetra-			
		1.000250		Lorenz, 74		chloride . .		1-002600	D.a M.		
		r.000377				Phosph. hydrogenPhosphorus tri-		1.000786*	Dulong, '26		
Ammonia		1.0003		Mascart, ${ }^{\text {P }}$ (78							
Nitrous oxide . .		$1 \cdot 000515$		Mascart, ${ }^{7} 7$		chloride $\mathrm{CH}^{\text {. }}$		1.001730	Mascart, '78		
Nitric oxide-		1*000297		-		Meth	ane, CH_{4}.	$1 \cdot 000441$	" \quad "		
Hydrochloric acid		1.000444				Penta	ane, $\mathrm{C}_{5} \mathrm{H}_{12}$.	1.001701	" "		
Hydrobromic acid		1.000570				Acety	lene, $\mathrm{C}_{2} \mathrm{H}_{2}$.	$1 \cdot 000606$			
Hydriodic acid		r.000906		Hurion, ' 77		Ethylene, $\mathrm{C}_{2} \mathrm{H}_{4}$.		$1 \cdot 000719$			
Carbon monoxide dioxide		1.000334		Perreau,' 66		Benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$.		1.000674			
", dioxide bisulphide		$1 \cdot 0004498$				1.001812	$\text { Mascart, } 78$				
				Mascart,' 78 Dulong,'26				Methyl fluoride		1.001765	Prytz, '91 uthbertson
		1.000619		$\text { Mascart, } 78$		Methyl fluoride " chloride .		1.000449			
		$\begin{aligned} & \text { r. } 000660 \\ & \text { r } 000737 \end{aligned}$		Walker, '03 C. \& M., 'os				1.00055			
Sulphur dioxide .trioxide ", hexafluoride				" alcohol	1.000619	Mascart, 78					
		$1 \cdot 0007$	783					Chloro	oform, CHCl_{3}	1.001455	-
Selenium		$1 \cdot 0008$	895				on tetra-				
Tellurium	"	1.000)	991				loride .	1.001768	" "		

[^11]
REFRACTIVE INDICES

Refractive indices, μ, (against air) at $15^{\circ} \mathrm{C}$. for various wave-lengths.
The temperature coefficient given below is the change of refractive index per $1^{\circ} \mathrm{C}$. rise of temperature for the case of the sodium D line.

The refractive indices are due chiefly to Gifford (Proc. Roy. Soc., 1902, 1904, 1910); Rubens and Paschen (for the infra-red) and Martens (1902). The two Jena glasses are selected as typical. Other glasses are dealt with on p. 74 .

Wave-length in A.U. ($10^{-8} \mathrm{~cm}$.).	Calcspar, $18{ }^{\circ}$		Jena glass.		Fluorite, CaF_{2}. 18°.	Quartz, 18°.		Fused silica.	Rock salt, 18°.	Syl- vin, KCl 18°.	Water at 20°.
	ord. ray.	ext. ray.	Crown*	flint. \dagger		ord. ray.	ext. ray.				
Infra-red.	I^{*}	1°	I^{*}	I^{-}	I^{*}	I^{*}	${ }^{\circ}$	I^{*}	${ }^{*}$	$1 \cdot$	$1 \cdot$
223,000						-	-	-	3403	37127	
94,290			-	-	3161	-	-	-	4983	4587	
42,000					4078	4569	-	-	5213	4720	-
21,720	6210	4746	4946	6153	4230	${ }^{5} 180$	5261	-	5262	4750	-
12,560	6388	4782	5042	6268	4275	5316	5402	-	5297	4778	3210
Visible.											
Li, (r) 6708	6537	$48+3$	5140	6434	4323	5415	5505	4561	5400	4866	3308
$\mathrm{H},(\mathrm{C}) 6563$	$65+4$	$48+6$	5145	$64+4$	4325	5419	5509	4564	5407	4872	3311
Cd, (r) 6438	6550	$48+7$	5149	6453	4327	5423	5514	4568	5412	4877	3314
Na, (D) 5893	6584	4864	5170	6499	4339	5443	5534	4585	5443	4904	3330
$\mathrm{Hg},(\mathrm{g}) 5461$	6616	4879	5191	6546	4350	5462	5553	4602	5475	4931	3345
$\mathrm{Cd},(\mathrm{g}) 5086$	6653	4895	5213	6598	4362	5482	5575	4619	5509	4961	3360
$\mathrm{H},(\mathrm{F}) 4861$	6678	49 ว	5230	6637	4371	5497	5590	4632	5534	4983	3371
Cd , (b) 4800	6686	4911	5235	6648	4369	5501	5594	4636	5541	4990	3374
Hg , (v) 4047	6813	4959	5318	6852	4415	5572	5667	4697	5665	5097	3428.
Ultra-violet.											
Sn 3034	7196	5136	5552	-	4534	5770	5872	4869	6085	5440	3581
Cd 2144	8459	5600	5552	-	4846	6305	6427	5339	7322	6618	4032
Al 1852			-	-	5099	6759	6901	5743	8933	8270	
$\left.\begin{array}{r} \text { Temp. co- } \\ \text { efficient (D) } \end{array}\right\}$	$+{ }^{\circ} 0_{5} 5$	$+{ }^{\circ} \mathrm{O}_{4} \mathrm{I} 4$	$-0_{5} \mathrm{I}$	$+{ }^{\circ} \mathrm{O} 3$	$-{ }^{\circ} \mathrm{O}$ I	- $0_{5} 5$	$-{ }^{\circ} \mathrm{O}_{5} 6$	${ }^{\circ} \mathrm{O}_{5} 3$	${ }^{\circ} \mathrm{O} 4$	- ${ }^{\circ}$	$-0_{4} 8$

* Light barium crown. $\quad+$ Dense silicate flint. $\ddagger \mu=1 \cdot 3692$ for $\lambda=225,000$.

REFRACTIVE IND:CES
Refractive indices μ_{D} (against air) at 15° C. for sodium D line ($\lambda=5893 \times 10^{-8}$ cm.).

Sabstance.	$\mu_{\text {d }}$	Substance.	$\mu_{\text {D }}$	Substance.	$\mu_{\text {D }}$
Solids. Alum (potash)		Alcohol, ethyl ${ }^{\text {a }}$	1.362 1.41	Monobrom benzene	1.563
Cyanin. -	1.456	Aniline. ${ }^{\text {a }}$	1.590	lene.	1.660
Diamond . . .	24.417	Benzene	1.504	Nitrobenzene.	1.553
Glass (see above	2417	Bromoform	$1 \cdot 591$	Oil, cedar.	1516
and p. 74) .	131	Canada balsam.	1.53	cloves	1532
Mica : i 56 to	1.60 1.76	Carb. bisulphide tetrachloride	1.632 1.464	", cinnamon	${ }^{1} \cdot 601$
Ruby . . .	1.76 1.56	Chloroform tetrachloride	1.464 1449	", paraverfin	1.46 1.44
Sugar	1.56 1.63	Ether, ethyl . .	1449 1.354	Sulphuric acid	1
Topaz .	1	Ethylene dibromide	1.540	Turpentine	147
Liquids.		Glycerine	147	Water (see above).	1333
Alcohol, methyl	133	Methylene iodide	1744		

DISPERSIVE POWERS

The dispersive power (ω) given below $=\left(\mu_{C}-\mu_{F}\right)\left(\mu_{D}-1\right)$, where $\mu_{C}, \mu_{D}, \mu_{F}$ are the refractive indices corresponding to the red (C) H^{\prime} line (6563), the yellow Na (D) line (5893), and the green-blue (F) hydrogen line (4862).

Substance.	ω	Subitance.	ω	Substance.	
Solids.				Liquids.	
Calcite, ord.	$\bigcirc 0204$		$\text { OI } 46$	Carb. bisulphide	
Fluobrite ext. .		Fused salica .			-
Glass (see p. 74)		Sylvin.	$\bigcirc 226$	Water.	-0180

SILVERING SOLUTION

Due to the late Dr. Common. Other recipes will be found in Baly's "Spectroscopy " (Longmans) and Woollatt's "Laboratory Arts" (Longmans).

Make up 10% solutions of (1) pure nitrate of silver, AgNO_{3}; (2) pure caustic potash, KOH ; (3) loaf sugar ; and (4) ammonia (90% water, 10% ammonia of sp. gr. -880). To the sugar soln. add $\frac{1}{2} \%$ of pure nitric acid and 10% of alcohol. The sugar soln. is very much improved by keeping. Make up also a 1% soln. of AgNO_{3}. Distilled water must be used for all the solns.

For silvering say a $12-\mathrm{in}$. mirror, take 400 c.c. of the AgNO_{3} soln. and add strong ammonia until the brown precipitate first formed is nearly dissolved, then use the 10% ammonia until the soln. is just clear. Add $200 \mathrm{c} . \mathrm{c}$. of the KOH soln. A brown precipitate is again formed, which must be dissolved in ammonia exactly as before, the ammonia being added until the liquid is just clear. Now add the I \% soln. of AgNO_{3} until the liquid becomes a light brown colour about equal in density of colour to sherry. This colour is important, and can only be properly obtained by the use of the weak soln. Dilute the liquids to 1500 c.c. with distilled water.

The mirror should be thoroughly cleaned with acid and placed in a dish of distilled water.

All being ready, add $200 \mathrm{c} . \mathrm{c}$. of the sugar soln. to $500 \mathrm{c} . \mathrm{c}$. of water ; add the mixture to the silver-potash soln., mix thoroughly, and pour them into a clean empty dish. Then lift the mirror out of its dish of distilled water and place it face downwards in this soln., taking care to exclude all air-bubbles.

The liquid will turn light brown, dark brown, and finally black. In four or five minutes, often sooner, a thin film of silver will commence to form on the mirror, and this will thicken until in about 20 minutes the whole liquid has acquired a yellowish-brown colour, with a thin film of metallic silver floating on the surface. Half an hour is the usual time taken in silvering, but this is shortened by using warmer liquids. About $18^{\circ} \mathrm{C}$. is the best temperature.

Lift the mirror out, thoroughly wash with distilled water, and stand on its edge for say 12 hours in an inclined position until it is dry. The slight yellowish "bloom" can then be polished off by rubbing softly with a pad of chamois leather and cottonwool. The subsequent polishing is done with a little dry well-washed rouge on the leather pad. The film should be opaque and brilliant, and with careful handling will be very little changed with long use.

Porcelain, glass, or earthenware dishes should be used.
If a very thick film is required, two silvering baths can be used, the article being left in the first bath for 15 minutes, then lifted out, rinsed with distilled water and at once immersed in the second bath, which should be ready in another dish. The film should not be allowed to dry during the operation of changing baths.

Note.-The silver-potash solution will not keep beyond a couple of hours. Any excess of this solution unused should have the silver precipitated at once with HCl . If the silverpotash is kept, say for 10 or 12 hours, a black powder collects on the surface. This powder, which is probably some form of fulminate of silver, is explosive, and may shatter the vessel.

GLASS

The raw materials for the manufacture of glass are (1) silica-usually as sand or felspar; (2) salts of the alkali metals- $\mathrm{Na}_{2} \mathrm{SO}_{4}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, or $\mathrm{K}_{2} \mathrm{CO}_{3}$; (3) salts of bases other than alkalies-red lead, limestone or chalk, BaCO_{3} or $\mathrm{BaSO}_{4}, \mathrm{MgCO}_{3}$, $\mathrm{ZnO}, \mathrm{MnO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{As}_{2} \mathrm{O}_{3}$, etc. In general, glasses rich in silica and lime are hard, while glasses in which alkali, lead, or barium preponderate are soft. Hardness is, of course, also largely dependent on annealing. Ordinary "soft" (i.e. easily fusible) German glass is a soda-lime glass rather rich in alkali; "hard" (refractory) glass is a potash-lime glass rather rich in lime. Jena combustion tubing is a borosilicate containing some magnesia.

Thermometry Glasses.-Glasses which contain both soda and potash to any extent give a large temporary zero depression (see p. 45). Data concerning Verre dur ($7 \mathrm{I} \% \mathrm{SiO}_{2}, 12 \% \mathrm{Na}_{2} \mathrm{O}, \frac{1}{2} \% \mathrm{~K}_{2} \mathrm{O}, 14 \% \mathrm{CaO}, 2 \% \mathrm{Al}_{2} \mathrm{O}_{3}$ and MgO), Fena $16^{\prime \prime \prime}$ $\left(67 \% \mathrm{SiO}_{2}, 14 \% \mathrm{Na}_{2} \mathrm{O}, 7 \% \mathrm{CaO}, 12 \% \mathrm{ZnO}, \mathrm{Al}_{2} \mathrm{O}_{3}\right.$ and $\left.\mathrm{B}_{2} \mathrm{O}_{3}\right)$, 7 ena $59^{\prime \prime \prime}\left(72 \% \mathrm{SiO}_{2}\right.$, $12 \% \mathrm{~B}_{2} \mathrm{O}_{3}, \quad 11 \% \quad \mathrm{Na}_{2} \mathrm{O}, 5 \% \mathrm{Al}_{2} \mathrm{O}_{3}$), Kew glass ($44 \% \mathrm{SiO}_{2}, 34 \% \mathrm{PbO}, 12 \% \mathrm{~K}_{2} \mathrm{O}$, $2 \% \mathrm{Na}_{2} \mathrm{O}, 2 \% \mathrm{CaO}, \mathrm{MgO}$, etc.), will be found on p. 45 .

Optical Glasses.-In building up achromatic lens systems a knowledge of the dispersive power (ω) of each glass employed is essential. This is defined as the ratio of the difference of the deviations (i.e. the dispersion) for any two colours to the deviation of some mean intermediate colour. ω thus depends on the colours selected ; for visual work they are usually the red (C) line of hydrogen (wave-length $\lambda_{c}=6563 \times 10^{-8} \mathrm{~cm}$.), the yellow sodium (D) line ($\lambda_{D}=5893$), and the green-blue (F) hydrogen line ($\lambda_{\mathrm{F}}=4862$). If $\mu_{\mathrm{C}}, \mu_{\mathrm{D}}, \mu_{\mathrm{F}}$ are the corresponding refractive indices, $\omega=\left(\mu_{C}-\mu_{\mathrm{F}}\right) /\left(\mu_{\mathrm{D}}-1\right)$ for the brightest part of the visible spectrum.

Flint glass-a term which survives from times when ground flints were extensively employed in making the best glass-now always implies a dense glass which contains lead and has a high refractive index and dispersive power.

Crown glass, originally designating only lime-silicate glasses, is now applied generally to glasses having a low dispersive power.

Jena Optical Glasses.-For ordinary flints and crowns ω and μ are roughly proportional, and this was true for all commercially available glasses prior to the advances initiated in 1881 by Abbé and Schott at Jena. They succeeded (e.g. by the addition of barium) in producing glasses which do not obey any such proportionality ; e.g. the very valuable barium crown glasses (below) combine the high refractive index of a flint glass with the low dispersive power of a crown. Such glasses have brought.about the excellent achromatism and flatness of field which now obtain in photographic lenses and large telescopic objectives. The introduction of boron into a glass lengthens the blue end of the spectrum relatively to the red ; the addition of phosphorus, fluorine, potassium, or sodium has the opposite effect : such control over the dispersion has made the modern microscope possible.

Some typical examples of Jena glasses are subjoined. For a complete list, see the catalogue of Schott and Genossen, Jena. The simple phosphate and borate glasses have been withdrawn on account of their lack of durability. The borosilicate crowns are among the most durable and chemically resistant of all glasses. The U.V. glasses are markedly transparent to ultra-violet light as far as about $\lambda=2880$.

See p. 72, and Zschimmer's "History of the Jena Glass Works," Hovestadt's "Jena Glass," and Rosenhain's "Glass Manufacture," 1908 (with bibliography).
(After Zschimmer, Zeit. Inst., 1908.)

Glass.	$\mu_{\text {D }}$	$\omega_{(C, D, F)}$	Dens.	Glass.	μ_{D}	$\omega_{(C, D, F)}$	Dens.
Crowns -	14782	0152		Flints (contd.)-			$\frac{\mathrm{grms.}}{\text { c.c. }}$
				U.V. fint 3492	1•5329	. 0131	
(Silicate) crown .	1.5127	-0175		Telescope (Sb) flint	1.5286	-194	2.50
U.V : crown 3199.	1.5215 1.5035 159	.0168	$2 \cdot 50$	Borosilicate flint.	1.5503 1.5753 1 548	-0203	2.81 2.90
Borosilicate crown $\{$	I.4944	-015	2.33		1.5489	-0187	290
	1.5141	-156	2.47		1.5825	-0216	
Barium crown . $\{$	1.5726	-0174	3.21	Barium flint	1.5848	- 0189	
Heavy barium crown Flints-	1.6120 1.6130	-0180	$3 \cdot 60$		1.6235 1.6570 17	.0256 .0276 .03	3.67 3.95
					177174	-0340	4.49
(Silicate) fint		-0244		Heavy flint	177782 r.9044 1	-0378	4.99 5.92
	1.6138 1.6489	-0271	3.58 3.87	Heavy	1.9044 19625	-0508	5.92

SPECTROSCOPY

It is now agreed that the use of the diffraction-grating in fundamental work must be limited to interpolation between standard wave-lengths obtained by other means. The accepted standard lines are three in the spectrum of cadmium. Their wavelengths (λ) obtained by interference methods, and measured (by direct comparison with the standard metre at Paris) in dry air at $15^{\circ} \mathrm{C}$. (H-scale) and 760 mms . mercury pressure, are given below in tenth-metres ($=10^{-8} \mathrm{~cm}$. $=1$ Angström unit). (See Michelson's "Light Waves and their Uses.") $\left[\mu=10^{-4} \mathrm{~cm} . ; \mu, \mu=10^{-7} \mathrm{~cm}.\right]$

Observer.	$\lambda \mathrm{Cd}$ red.	λ cd green.	λ cd blue.
Michelson and Benoit, 1894. ${ }^{\circ}$. . . Benoit, Fabry, and Perot, 1907. .	$\begin{aligned} & 6438.4700 \\ & 6438.4702 \end{aligned}$	5085.8218	4799.9085

The following values (all in tenth-metres) are of course only approximate :-

Hertzian Waves.	Infra-red.	Red.	Orange.	Yellow.	Green.	Blue.	Violet.	Ultra-violet.
$10^{14}-4 \times 10^{7}$	$3^{\cdot 1} \times 10^{68} § 7700$	6470	5880	5500	4920	4550	3600	600 II

STANDARD LINES-IRON ARC SPECTRUM

Obtained by an interference method, and based on Benoit, Fabry, and Perot's value for the wave-length of the red line of cadmium. The wave-lengths below are given in tenth-metres ($10^{-8} \mathrm{~cm}$.), measured in dry air at $15^{\circ}(\mathrm{H}$-scale) and 760 mms . mercury. (Buisson and Fabry, Compt. Rend., 1907 and 1909.)

2373.737	2987.293	3724.379	4352.741	4878.226	5405•780	5952.739
2413.310	$3030{ }^{\prime} 152$	3753.615	4375*935	4903.324	5434.530	6003.039
2435* 159 *	3075.725	$3805 \cdot 346$	4427.314	4919.006	$5455 \cdot 616$	6027×059
2506.904*	3125.661	3843.261	$4456 \cdot 554$	$4966 \cdot 104$	$5497 \cdot 521$	6065.493
2528.516*	3175.447	3865.526	$4497^{\circ} 572$	$5001 \cdot 880$	$5506 \cdot 783$	6137.700
2562.541	3225.790	3906.48 I	4531*155	5012.072	5535.418	6191569
$2588 \cdot 016$	3271.003	$3935 \cdot 818$	$4547 \cdot 854$	$5049 \cdot 827$	5569.632	$6230 \cdot 732$
$2628 \cdot 296$	3323.739	3977 745	$4592 \cdot 658$	5083.343	5586.770	$6265 \cdot 147$
2679.065	3370* 789	$4021 \cdot 872$	4602.944	5110415	$5615 \cdot 658$	6318.029
2714.419	$3399{ }^{\circ} 337^{\prime}$	4076.641	4647.437	5127.364	$5658 \cdot 835$	6335.343
2739.550	3445 ' 55	4118.552	$4678 \cdot 855$	5167.492	5709.396	$6393 \cdot 612$
2778.225	3485.344	4134.685	4707.287	5192.362	5760.843 \ddagger	$6430 \cdot 859$
2813.290	3513.820	4147.677	4736.785	5232.958	5763.013	6494.994
2851.800	3556.879	4191.441	$4754^{\circ} 046 \dagger$	$5266 \cdot 568$	$5805.211 \ddagger$	
2874.176	$3606 \cdot 681$	$4233 \cdot 615$	4789.657	$5302 \cdot 316$	$5857 \cdot 760 \ddagger$	
2912.157	$3640 \cdot 391$	4282.407	$4823.521 \dagger$	5324.196	$5892 \cdot 882 \ddagger$	$1 \mathrm{Mn}$
$2941 \cdot 347$	$3677 \cdot 628$	$4315 \circ 089$	4859*756	5371×498	5934.683	$\ddagger \mathrm{Ni}$.

CHIEF ABSORPTION (FRAUNHOFER) LINES IN SOLAR SPECTRUM

Rowland's wave-lengths corrected approximately by the use of Fabry and Perot's results, measured in tenth-metres ($10^{-8} \mathrm{~cm}$.) in air at 20° and 760 mms . Owing to atmospheric absorption, the sun's spectrum extends only to about wave-length 3000.

Line.	Subst.	Rel. Intens.	Line.	Subst.	$\begin{gathered} \text { Rel. } \\ \text { Intens. } \end{gathered}$	Line.	Subst.	Rel. Intens.
3047×5	Fe	20	L $3820{ }^{4}$	$\mathrm{Fe}-\mathrm{C}$	25	$\left(\mathrm{H}_{4}\right) 4.340^{\circ} 4$	H	20
$3057 \cdot 3$	$\mathrm{Ti}-\mathrm{Fe}$	20	3825.8	Fe	20	F $4861 \cdot 37$	H ${ }^{(\beta)}$	30
$3059{ }^{\circ}$	Fe	20	3838.2	$\mathrm{Mg}-\mathrm{C}$	25	$b_{2} 5172^{\circ} 7$	Mg	20
O $33440^{\circ} 6$	Fe	20	3859.8	$\mathrm{Fe}-\mathrm{C}$	20	$b_{1} 5178.22$	$\mathrm{Mg}^{\text {g }}$	30
${ }^{-1341^{\circ} \mathrm{O}}$	Fe	15	K $3933{ }^{\circ} 6$	Ca	1000	E 5269.56	Fe	8
3524.5	Ni	20	3961×5	Al	20	($\mathrm{D}_{3} 5875 \cdot 62$) \dagger	He	-
N $3581{ }^{\circ} \mathrm{C}$	Fe	30	H 3968.4	Ca	700	$\mathrm{D}_{2} 5889^{\circ} 97$	Na	30
$3608 \cdot 8$	Fe	20	4045.8	Fe	30	$\mathrm{D}_{1} 58959.93$	Na	20
$\begin{array}{r}36187 \\ \hline\end{array}$	Fe	20	(1063.6	$\stackrel{\mathrm{Fe}}{\mathrm{H}}$	20	C 65622°	$\mathrm{H}^{(a)}$	40
M $3719^{\circ} 9$	Fe	40	$\left(\mathrm{H}_{8}\right) 4101.8$		40		\ddagger	6
$3734 \cdot 8$ 3737	Fe	40 30	G $\begin{array}{r}4226.7 \\ \text { G } 43079\end{array}$	$\stackrel{\mathrm{Ca}}{\mathrm{Fe}}$	20 6	A 7661**	\ddagger	

[^12]
EMISSION SPECTRA OF SOLIDS

For a fuller treatment of wave-lengths see Watts' "Index of Spectra" and appendices, Kayser's "Handbuch der Spectroscopie," Hagenbach and Konen's "Atlas of Emission Spectra," 1905. For recent work consult the Astrophysical Fournal. The wave-lengths below are measured in tenth-metres ($10^{-8} \mathrm{~cm}$.) in air at $15^{\circ} \mathrm{C}$. and 760 mms . The visible spectrum colours are indicated $-r, 0, y, g, b, v$.

The brightest lines are emphasized and the approximate boundary of the ultraviolet region is indicated thus

ALUMinium (arc). 3083 3093 $\cdots .$. $3944 v$ $3962 v$ 4663 5057 5696 56 $5723 y$	CADMIUM (contd.)	calcium (contd.)	MAGNESIUM (contcl.)	RADIUM (contd.)	SODIUM (NaCl in flame).
	4413 b	61220	3832	4683 v	Fabry and
	46789.908 b	61620 $6+40$	5168	210	Perot, $1902 ;$
	$5085 \cdot 822 \mathrm{~g}$	$6+630$	(b_{2}) 5173	5360	Rayleigh,'o6
	5338 g	6500 r	($\mathrm{b}_{2} 5184$	5655	$\left(\mathrm{D}_{2}\right) 5889 \cdot 9650$
	5379 g		5529	5685	
		(arc in vacuo).	MER	6216	
	CAESIUM CsCl in flame)	nd	(Mercary lamp)	62280^{3}	
$\begin{aligned} & \text { 5ARIUM } \\ & \text { BARI } \\ & \text { (} \mathrm{BaCl}_{2} \text { in } \\ & \text { flame). } \end{aligned}$		Perot, 1902.	Stiles, Astro.	62500^{3}	with lines at
	$3611 \cdot 8$3617387	3248	fourn., 19 3126	62600^{3}	$4607 \cdot 5 b$
		3274	3126 3131	6269	3870
Full of bands, somediffuse, and some resolvable.	3889	4023 v	3650	$628590^{\text {o }}$	thallium
	$4555 b$	$\begin{aligned} & 4063 \\ & 5105.543 \\ & g \end{aligned}$	$4046 \cdot 8 \quad v$	63490 $\left(6530 r^{3}\right.$	(Tl or TiCl_{2} in
	$4593 b$	$\begin{aligned} & 5105.543 \mathrm{~g} \\ & 5153.251 \mathrm{~g} \end{aligned}$	$4078 \cdot 1$ $4358 \cdot 343$ 10	$\left\{\begin{array}{l}6530 \\ \text { to }\end{array}\right.$	3550.7 g
	$5664 y$	$5218 \cdot 202 \mathrm{~g}$	4916.4 b g	6700 r	Tin
3910 v	60110	$\begin{aligned} & 5700 \\ & 5782.090 \\ & 5782.159 y \end{aligned}$	4959 $5460 \cdot 742{ }^{\text {g }}$ g		(spark).
3994 v	62130		$5460 \cdot 742 g^{2}$	${ }^{3}$ Bands.	3009
4554		$\begin{aligned} & \text { INDIUM } \\ & \left(\text { In }(0 \mathrm{OH})_{2}\right. \text { in } \\ & \text { flame). } \end{aligned}$	$5790.659 y^{2}$	RUBID	3034
4934 g			61520	(RbCl in flame).	3175
5536 gy	calcium (CaCl_{2} in flame).		$6232^{\circ} 0$	3349	3262
5778 y		$\begin{aligned} & 4102 v \\ & 4511 v \end{aligned}$	${ }^{2}$ Fabry and	3351	3231
6142			Perot, 190	3587	3596
6497	dominate ; line at	$\begin{aligned} & \text { IRON } \\ & \text { (see p. } 7! \end{aligned}$	l		3746
BORON				4202	4525
(Boric acid in flame).		Lithium (9) (LiCl in flame).	POTASSIU	4216	5563 y
	4227		(KCl in flame).	5618 y	5589 y
Diffuse maxima at	(Flame arc)3362		3446	$5724 y$ 62070	5799 y
		$4132 v$	3447	6298.7	6453.0
4500 b4700 b	(1) $\begin{array}{r}3644 \\ \cdots\end{array}$	$\begin{array}{lc} 4602 & b \\ 6104 & o \\ 6707: 846 & r^{1} \end{array}$			ZINC
				SILVER	
$4900 b$	(K) $3934 v$		$\begin{aligned} & 4047 v \\ & 5802 y \end{aligned}$	(arc in vacuo).	3036
5200 g	(H) 3968 v	${ }^{1}$ Fabry and Perot, 1902.	7668 r	3281	$\begin{aligned} & 3036 \\ & 3072 \end{aligned}$
5800 y	4227 4303 b 4426		7702	3383	3345
6000 o		MAGNESIUM (arc)	RAD	4053	$680 \cdot 138$
CADMIUM (arc).			(RaB	4212	$4722 \cdot 164 b^{5}$
	$4586 b$		flame).	$4669{ }^{4}{ }^{\text {b }}$	$4810 \cdot 535 b^{5}$
3261	5270 g	3093	Runge and	$5209.081 \mathrm{~g}^{4}$	4912 b
34043466		3097	Precht, 1903.	$5465 \cdot 489 g^{4}$	4925 gb
	5350 g	3330	3650	5472	6103
3466 3611	5589 y	3332	3815	5623	6362.3450^{5}
$3982 v$	$\begin{aligned} & 5595 y \\ & 5858 y \end{aligned}$	3337		${ }^{4}$ Fabry and	${ }^{5}$ Fabry and

77
 EMISSION AND ABSORPTION SPECTRA

EMISSION SPECTRA OF GASES

The gases are all in vacuum tubes ($2-4 \mathrm{mms}$. press.) ; only the brightest lines are given. The visible spectrum colours are indicated- r, o, y, g, b, v_{0}

See the general remarks on last page.

ABSORPTION SPECTRA

For wave-lengths of the Fraunhofer lines in the sun's spectrum, see p. 75.
Among the enormous literature on absorption spectra, reference may be made to Kayser's "Handbuch der Spectroscopie," Baly's "Spectroscopy," Vogel's "Praktische Spectralanalyse," the writings of Prof. Hartley, Jones and Anderson's "Absorption Spectra of Solutions," 1909, Smiles' "Chemical Constitution and Physical Properties," and the British Association Reports of 1901 et seq.

Convenient substances which show good absorption spectra are-neodymium and praseodymium salts and didymium glass (which yield some extremely narrow absorption lines), iodine vapour, nitrogen peroxide, chlorine, chlorophyll, blood, and potassium permanganate solution.

OPTICAL ROTATIONS OF PURE LIQUIDS AND SOLUTIONS

$\mathrm{A}_{t}=$ the rotation in degrees (for light of some given wave-length) of the plane of polarization by a liquid when at the temperature $t^{\circ} \mathrm{C}$.
$l_{t}=$ the length of the column of liquid in decimetres (i.e. 10 cms .).
$p=$ the number of grams of active substance in 100 grams of solution.
$q=(\mathrm{IOO}-p)=$ the percentage (by weight) of inactive solvent in the solution.
$\rho_{t}=$ the density in grams per c.c. of the liquid or solution at t°.
$c_{t}=p p_{t}=$ the concentration expressed as grams of active substance ner 100 c.cs. of solution at t°.
$[\alpha]_{t}=$ the specific rotation $\left(\right.$ at $\left.t^{\circ}\right)=\frac{\text { rotation per decimetre of sol. }}{\text { grams of active substance per c.c of sol. }}$
For a pure liquid $[a]_{t}=\frac{\mathrm{A}_{t}}{l_{t} p_{t}}$.
For an active substance in solution $[\alpha]=\frac{\mathrm{A}_{t}}{l_{t}} /\left(\frac{p}{p+q} p_{t}\right)=\frac{100 \mathrm{~A}_{t}}{l_{t} p p_{t}}=\frac{100 \mathrm{~A}_{t}}{l_{t} c_{t}}$, since $(p+q)=100$.

The rotation depends on the wave-length of the light used; it increases as the wave-length (λ) diminishes $\left(\alpha \propto \frac{1}{\lambda^{2}}\right.$ approx. $)$. α also varies with the nature of the inactive solvent and with the concentration of the solution.

The rotation is called positive or right-handed (dextro, d) if the plane of polarization appears to be rotated in an anti-clockwise direction when looking through the liquid away from the source of light. The contrary rotation is called lævo (l). The molecular rotation is the specific rotation multiplied by the molecular weight.
$[\alpha]_{20}^{\mathrm{D}}$ indicates that the specific rotation is measured at $20^{\circ} \mathrm{C}$. using sodium (D) light.
(See Landolt's "Optical Rotations of Organic Substances and their Practical Application.")

[^13]OPTICAL ROTATIONS

Optically Active Substance.	Solvent.	Conditions.	Specific Rotation [$]_{\text {] }}$
Galactose ($(\Omega), \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ (Meissl, 1880)	water	$\begin{aligned} & p=4 \text { to } 36 \\ & t=10^{\circ} \text { to } 30^{\circ} \mathrm{C} . \end{aligned}$	$\begin{gathered} {[a]_{t}^{\mathrm{D}}=+83^{\circ} \cdot 9+.078 p} \\ -.21 t \end{gathered}$
$\begin{aligned} & \hline \text { Ordy. Tartaric acid }(d), \\ & \mathrm{H}_{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6} \\ & \hline \end{aligned}$	water	-	$[\alpha]_{20}^{\mathrm{D}}=+15^{\circ} 06-.1316$
Potassium tartrate (d), $\mathrm{K}_{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{8}$ (Thomsen, 1886)	water	$c=8$ to 50	$\begin{gathered} {[a]_{20}^{\mathrm{D}}=+27 \cdot 14+0792 c} \\ -00094 c^{2} \end{gathered}$
Rochelle salt (d), $\mathrm{KNaC}_{4} \mathrm{H}_{4} \mathrm{O}_{6}$	water	-	$[a]^{\text {d }}$ d $=+29 \cdot 73-0078 c$
l - Turpentine, $\mathrm{C}_{10} \mathrm{H}_{16}$ (Gernez, 1864 ; Landolt, 1877)	pure liquid	-	$[a]_{20}^{\text {D }}=-37^{\circ}$
	vapour	at $761 \% \mathrm{mms}$.	$\begin{gathered} {[a]_{\text {b8 }}^{D}=-35^{\circ} 5 \text { for mean }} \\ \text { yellow } \end{gathered}$
	$\begin{gathered} \text { alcohol } \\ \left(\rho_{20}=796\right) \end{gathered}$	$q=0$ to 90	$\begin{gathered} {[\alpha]_{20}^{0}=-37^{\circ}-00482 q} \\ -00013 q^{2} \end{gathered}$
	benzene	$q=0$ to 9 t	$[\alpha]_{20}^{\mathrm{D}}=-37^{\circ}-{ }^{\circ} \mathrm{O} 65 q$
	paraffin oil	Within wide lin percen	nits [a] increases with the ntage of paraffin.
$\begin{gathered} \text { Quinine sulphate (l), } \\ \mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{SO}_{4} \\ \text { (Oudemans, 1876) } \end{gathered}$	water	c about 1.6% of alkaloid (calculated)	Salt $[\alpha]_{17}^{0}=-214^{\circ}$ Alkaloid $[a]_{17}^{\mathrm{D}}=-278^{\circ}$
Nicotine (l), $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2}$ (Landolt, 1877 ; Hein, 1898)	pure	$t=10^{\circ}$ to $30^{\circ} \mathrm{C}$.	$[a]_{20}^{D}=-162^{\circ}$
	benzene	$p=8$ to 100	$[a]_{20}^{\text {D }}=-164^{\circ}$
	water	$p=1$ to 16	$[a]_{20}^{D}=-77^{\circ}$
$\begin{array}{\|c\|} \text { Ethyl malate }(l), \\ \left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5} \\ \text { (Purdie \& Williamson, } \left.{ }^{\prime} 96\right) \end{array}$	pure liquid	. -	$[\alpha]_{11}^{\mathrm{D}}=-10^{\circ} \cdot 3$ to $-12^{\circ} \cdot 4$
Camphor (d), $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$ (Landolt, 1877 ; Rimbach, 1892)	alcohol	$q=45$ to 91	$[a]_{20}^{\mathrm{D}}=+54^{\circ} 4-\cdot 135 q$
	benzene	$q=47$ to 90	$[a]_{20}^{\mathrm{D}}=+56^{\circ}-\cdot 166 q$

OPTICAL ROTATION AND WAVE-LENGTH

Wave-length (λ) in $10^{-8} \mathrm{~cm}$.	Specific Rotation at $20^{\circ} \mathrm{C} .[\alpha]_{20}^{\lambda}$				QUARTZ AT $20^{\circ} \mathrm{C}$.	
	CaneCandy in $\mathrm{H}_{2} \mathrm{O}$.	Turpentine (pareliq.).	Tartario acid in $\mathrm{H}_{2} 0$ $(\mathrm{p}=41 \%)$	Nicotine (pure liq.).	Wave-length (λ) in $10^{-8} \mathrm{~cm}$.	Rotation for 1 mm . thickness.
H. (C) $6563(r)$	$52^{\circ} \cdot 9$	$-29^{\circ} \cdot 5$	$7{ }^{\circ} \cdot 75$	-126°	Li $6708(r)$	$16^{\circ} \cdot 4$
Na (D) 5893 (0)	$66 \cdot 5$	-37	$8 \cdot 86$	-162	H (C) $6563(\boldsymbol{r}$ Na (D) 5893 (o)	17.3 $21.72 *$
T1 5351 (g)	$8 \mathrm{I} \cdot 8$	-45	9.65	-207.5	T1 ${ }_{\text {HI }}$ (F) 5351 I (g)	$26 \cdot 53$ $32 \cdot 7$
					HI (δ) 4102 (b)	$47^{\prime} 48$
$\mathbf{H} \quad(\mathrm{F}) 4861(g)$	$100 \cdot 3$	$-5+5$	$9 \cdot 37$	-2535		

* For quartz at temperalure t^{ρ}, rotation $=21^{0.72}\{1+0.000147(t-20)\}$ for D line.

FARADAY EFFECT

MAGNETIC ROTATION OF POLARIZED LIGHT

This effect was discovered by Faraday in 1845. The rotation per cm . per unit magnetic field-Verdet's constant, $r=\alpha /(\mathrm{H} l)$, where α is the rotation in minutes for the substance in a magnetic field of H gauss, and l is the length of light-path parallel to the lines of force. r varies with the temperature and is roughly inversely proportional to the square of the wave-length of the light used. Films of Fe , Ni , and Co are exceptions to this rule.

If the light is travelling with the lines of force (i.e. from N. to S.), then the direction of rotation is positive, if the plane of polarization is rotated clockwise, to an observer looking in the direction in which the light is moving. If the light is reflected back on its path, the rotation is increased.

The Molecular rotation $r_{m}=r \mathrm{M} / d$, where M is the molecular weight of the substance, and d is its density. r_{m} is an additive property in organic. compounds (Perkin, Fourn. Chem. Soc., 1884).

The rotations below are for the sodium D line ($\lambda=5893 \times 10^{-8} \mathrm{~cm}$.).
(For Voigt's theory of magneto-rotation, see Schusters, "Optics," 1909. See also Becquerel's papers in Compt. Rend., etc.)

Substance.	Temp.	Rotation r in mins. of arc.	Substance.	Temp.	Rotation relative to Water.
Water	$0^{\circ} \mathrm{C}$	+oI3It,R.W.	Ethyl alcohol	16.8	-8637, P.
	20	+oI312,R.W.	n. propyl alcohol	$15 \cdot 6$	9139, P.
Cärbon bisulphide	0	+ 04347, R.W.	Amyl(iso) alcohul	19.9	-9888, P.
Quartz \downarrow axis	18	+ O4200, Ra.	Ethyl bromide .	$19 \cdot 7$ $5 \cdot 0$	$1 \cdot 395, \mathrm{P}$
Quartz, \perp axis . .	20	+'OI368,* Bo.	,, chloride " iodide	5.0 18.1	$\begin{array}{ll} 1 \circ 035, & \mathrm{P} . \\ 2.25 \mathrm{I}, & \mathrm{P} . \end{array}$
	20	+ $1587, \dagger$ Bo.	Formic acid	1208	-7990, P.
Jena \{phosphate crown	18	+or61, D.B.	Acetic , \quad.	21.0	-7976, P.
glass ${ }^{\text {heaviest flint . . }}$	18	+ 0888, D.B.	Propionic acid	$20 \cdot 3$	$\cdot 8369, \mathrm{P}$
FeCl_{3} dens. $=1.693$	15	- $2026, \mathrm{IB}$.	Benzene .	15	2.062, B .
" , I'023	5	+ $0122, \mathrm{~B}$.			

* $\lambda=6439 . \quad \dagger \lambda=2194$. B., Becquerel ; Bo., Borel, 1903 ; D.B., Du Bois, 1894 ; P., Perkin; Ra., Rayleigh, 1884 ; R.W., Rodger and Watson, 1896.

METALLIC REFLECTION OF LIGHT

(The percentage of normally incident light reflected from different surfaces.)
The column of figures (below) in the case of speculum metal ($7 \mathrm{Cu}, 3 \mathrm{Sn}$) reads 30% (for $\lambda=2510$) ; $51 \%, 56 \%, 64 \%, 67 \%, 71 \%, 89 \%, 94 \%$ (for $\lambda=140,000$).

Wave-length λ in A.U. ($10^{-8} \mathrm{~cm}$.).	Cu.	Au.	Ni.	Pt.	Ag.	Steel.	Magnalium.*	Glass mirror.	
								Ag back.	Hg back.
Ultra- $\quad 2,510$	26\%	39%	38\%	34\%	34\%	33\%	67\%	-	-
violet 3,570	27	28	49	43	74	45	8 I		
Visible	33	29	57	52	87	52	83	$86 \%+$	$73 \% \dagger$
	48	74	63	61	93	55	83		
5 7,000	83	92	69	69	95	58	83	90	73
Infra-red	90	95 97	72 91	73 91	97 98	63 88	84		
	98	98	97	96	99	96	92	$+\wedge=4$	$\begin{aligned} & 1,31 \\ & 4500 . \end{aligned}$

DIOPTER

In applied optics the "power" of a lens or mirror is expressed in diopters. The number of diopters equals the reciprocal of the focal length expressed in metres.

ELECTRICAL RESISTIVITIES

Electrical specific resistances or resistivities in ohmrecms. Conductivities (in reciprocal ohms) are the reciprocals of resistivitics. For a table of reciprocals, see p. 136 .

METALS AND ALLOYS

The resistivity depends to some extent on the state of the metal. In geveral, cold drawing increases, while annealing diminishes the resistance. The winding of a wire into a coil increases its resistance.

For pure metals; the resistance is roughly proportional to the absolute temperature, and would apparently vanish not far from the absolute zero.. This rule does not hold even approximately for alloys.

For wire resistances, see p. 83 ; for temperature coefficients, next page. The thermal conductivities of the same samples of many of the substances below will be found on p .51 .

ELECTRICAL RESISTIVITIES (contd.)

NON.METALS AND INSULATORS

The resistivities are in ohm-cms. at room temperatures unless otherwise stated. The values for insulators naturally vary widely, and the figures below are merely typical and are probably, in many cases, nothing more than the resistances of the surfaces. For a discussion of some electrical insulators, see Kaye, Proc. Phy. Soc. Lond., 1911.

Substance.	Sp. Re.	Substance.	Sp. Re.	Substance.	Sp. Re.
Gas carbon	$\left\{{ }^{.004}\right.$ to	Sulphur, 70°	$4 \cdot 10^{15}$	Guttapercha	$2 \cdot 10^{9}$
Graphite	.007	Ebonite . * *	$2 \cdot 10^{15}$	Mica .	$9 \cdot 10^{16}$
Graphite . C. lamp filament	.003	Glass, soda-lime *	$5 \cdot 10^{11}$	Paraffin wax ${ }^{\circ}$	$3.10{ }^{18}$
C. lamp filament Selenium $\ddagger(1907)$	${ }^{.004}$	" Jena, com-	$>2.10^{14}$	Porcelain, 50°.	$2 \cdot 10^{15}$
Selenium $\ddagger(1907)$ Silicon§.	$2.10{ }^{16}$	*	5.10^{8}	Quartz	$1 \cdot 2 \cdot 10^{14}$

[^14]
TEMPERATURE COEFFICIENTS OF RESISTANCE

To represent accurately over any considerable range the variation of electrical resistance (R) with temperature (t) requires for almost all substances a parabolic or cubic equation in t. But if the temperature interval is not large, a linear equation $\mathrm{R}_{t}=\mathrm{R}_{0}(1+a t)$ may be employed; and this gives a definition of the mean temperature coefficient (a) over that temperature range. The table of resistivities above will readily yield the associated values of α. The coefficients given below are average ones.

Substance.	Temp.	a	Substance.	Temp.	α
Metals-		$\times 10^{-4}$	Metals (contd.)-		$\times 10^{-4}$
Aluminium	18-100	38	Silver .	0-100	40
Bismuth	18	42	Tantalum	0-100	33
Cadmium	18-100	40	Tin . .	0-100	45
Copper*	18	$42 \cdot 8$	Tungsten (1910)	0-170	51
Cobalt	0-160	33	Zinc .	18-100	37
Gold, . ${ }^{\text {Iron }}$ pure.	0-100	40			
Iron, pure .	18	62	Alloys -		
Steel.	18	16-42	Brass	18	10才
${ }^{\text {Lead. }}$ Mercury \dagger	(18	43	Constantan (Eureka) .	18	$\left\{\begin{array}{l}-4 \text { to } \\ +\cdot 1 \ddagger\end{array}\right.$
Nickel, electrolytic	0-100	62	German silver	18	2.3-6
pi. commercial	0-1000	27	Manganin §	20	-02-5 \ddagger
Palladium .	18-100	37	Platinoid .	18	2.5
Platinum	-100-0	35	$90 \mathrm{Pt}, 10 \mathrm{Ir}$.	16	15
	0-100	38	90 Pt , 10 Rh . .	15	17
Molybdenum (1910)	0-170	50	Platinum-silver (coils)	16	2.4-3.3

[^15]
STANDARD WIRE GAUGE

The sizes of wires are ordinarily expressed by an arbitrary series of numbers. There are, unfortunately, four or five independent systems of numbering, so that the wire gauge used must be specified. The following are English Legal Standard wire gauge values. (See Foster's "Electrical Engineers' Pocket Book.")

Size.	Diameter.		S.ze.	Diameter.		Size.	Diameter.	
8.W.G.	Mm.	Inch.	S.W.G.	Mm.	Inch.	S.W.G.	Mm.	Inch.
6	4.88	-192	20	-914	.036	34	$\checkmark 234$.0092
8	$4 \cdot 06$	-160	22	-711	-028	36	-193	.0076
10	$3 \cdot 25$	-128	24	-559	-022	38	-152	$\bigcirc 0060$
12	2.64	104	26	-457	-018	40	-122	-0048
14	$2 \cdot 03$	-080	28	-376	-148	42	-102	-0040
16	1.63	. 064	30	315	- 124	44	-081	-0032
18	$1 \cdot 22$	-048	32	-274	- 108	46	.061	-0024

WIRE RESISTANCES

Average values in ohms per metre at $15^{\circ} \mathrm{C}$. The safe currents for copper (high conductivity annealed commercial) are calculated at the rate of about 270 $\mathrm{amps} . / \mathrm{cm} .^{2}$ for No. 12 wire, $430 \mathrm{amps} . / \mathrm{cm} .^{2}$ for No. 22 wire, and $500 \mathrm{amps} . / \mathrm{cm} .^{2}$ for smaller diameters. Larger current densities than these are allowed in the revised "Wiring Rules" of the Institution of Electrical Engineers. Eureka is practically identical with constantan.

The average temperature coefficient of resistance of copper is ${ }^{\circ} 00428$; of nickel, ${ }^{\circ} 0027$; of manganin, ${ }^{\circ} 00001$; of German silver, ${ }^{\circ} 00044$; of Eureka, - ${ }^{\circ} 00002$; of platinoid, ${ }^{\circ} 0025$ per degree Centigrade. The values for the alloys may vary considerably. The composition of manganin is $84 \mathrm{Cu}, 4 \mathrm{Ni}, 12 \mathrm{Mn}$; of German silver, $60 \mathrm{Cu}, 15 \mathrm{Ni}, 25 \mathrm{Zn}$; of Eureka, c. $60 \mathrm{Cu}, 40 \mathrm{Ni}$. Platinoid is said to be German silver with a little tungsten. For specific resistances, see p. 81.

s.w.a.	COPPER.		MANGA NIN. Ohms per metre.		GERMAN SILVER. Ohms per metre.		S. N.G.	COPPER.		MANGA		GERMAN SILVER.			
	Ohms per metre.	$\begin{gathered} \text { Safe } \\ \text { current } \end{gathered}$			$\begin{gathered} \text { Ohms } \\ \text { per } \\ \text { metre. } \end{gathered}$	$\begin{array}{r} \text { Safe } \\ \text { curren } \end{array}$		t.Ohms per metre.		Ohms per metre.					
12	'0032	amps. 15	. 077					041	30	-222	amp.		45	2.90	
14	-0054	$9 \cdot 8$	-131			-070	32	-293	3		18		$3 \cdot 83$		
16	-0083	6.8	-204			-109	34	-404	2		90		$5 \cdot 27$		
18	-0148	$4: 2$	-361			-193	36	-590	15	514			774		
20	-0260	$2 \cdot 6$	$\cdot 645$			- 345	38	-950	-1	23			124		
22	-0435	17				-57	40	1.48	$\bigcirc 6$	636			19.4		
24	-070	$1 \cdot 1$	1.071.73			-92	42	$2 \cdot 10$$3 \cdot 30$	\bigcirc	53.4		27.8 43 15			
26	$\cdot 105$	7	$2 \cdot 58$		$1 \cdot 38$		44		-3	$\begin{array}{r}81 \% \\ 145 \\ \hline\end{array}$					
28	-155	5	3.82		$2 \cdot 02$		46	590	$\bigcirc 2$				77.4		
EUREKA or Constantan.									PLATINOID (Martino's).						
S.W.G.	$\begin{gathered} \text { Ohms } \\ \text { per } \\ \text { metre. } \end{gathered}$	$\begin{aligned} & 20^{\circ} \text { C. temp.- } \\ & \text { rise caused } \\ & \text { by } \end{aligned}$		S.W.G.		$\begin{aligned} & \text { Ohms } \\ & \text { per } \\ & \text { metre. } \end{aligned}$	20° C. temp.rise caused by		S.W.G.	Ohms per metre.	\|s.W.G.		$\begin{aligned} & \text { Obms } \\ & \text { per } \\ & \text { metre. } \end{aligned}$		
12	-086	$\begin{aligned} & \text { amps. } \\ & 12^{\circ} 2 \end{aligned}$		20			${ }_{1} \frac{1}{5}$						$3 \cdot 69$		
14	-146	8				$1 \cdot 20$	\cdots		22	1.03			$5 \cdot 25$		
16	- 228	49		24		1•93	3		24	1.67			6.81		
18	-405	$2 \cdot 7$		26		2.89	1		26	2.50			$9 * 55$		

FUSES
The fusing currents are for wires mounted horizontally.

	Fusing current.	1 amp.	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$
Tin	S.W.G.	37	28	24	21	18	16	14	13
Copper	S.W.G.	47	41	38	33	28	25	23	$\mathbf{2 2}$

DIELECTRIC CONSTANTS

The inductivity, dielectric constant, or specific inductive capacity k of a material mày be defined as-
(i) The ratio of the capacity of a condenser with the material as dielectric to its capacity when the dielectric is a vacuum.
(2) The square of the ratio of the velocity of electromagnetic waves in a vacuum to their velocity in the material. This ratio is dependent on the wave-length, λ, of the waves; in most cases k increases with λ. Unless otherwise stated, the inductivities below are for very long waves $(\lambda=\infty)$ and at room temperatures.

If μ is the refractive index, then on Maxwell's theory of light, $k=\mu^{2}$, provided the frequency of the electrical oscillations is the same as that of the light vibratious. In practice we cannot find k for vibrations as rapid as those of the visible rays; the alternative is to obtain (by extrapolation) the refractive index for waves of very great wave-length, e.g. by the use of Cauchy's formula, p. 71. When such data are available Maxwell's relation is found to hold fairly exactly in the case of a number of gases and liquids, though there are many substances which provide marked exceptions. :
\cdots In general, a rise of temperature diminishes the inductivity. The temperature coefficient α between t° and T° is defined by $k_{\mathrm{T}}=k_{t}\{\mathrm{I}-\alpha(\mathrm{T}-t)\}$. In the case of water Palmer (1903) finds that a increases slightly with the frequency of oscillation. The Clausins-Mossotti relation $\frac{k-1}{\rho(k+2)}=$ const. (ρ being the density) has been shown by Tangl (Ann. d. Phys., 1908) to hold from I to 100 atmos. in the case of $\mathrm{H}_{2}, \mathrm{~N}_{2}$, and air.

IONIC DISSOCIATION THEORY

On the Dissociation Theory (Arrhenius, 1887), the solute is dissociated into electrically positive cathions and negative anions. For example, KCl in water exists as $\mathrm{KCl}, \mathrm{K}^{+}, \mathrm{Cl}^{-}$; sulphuric acid as $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}^{+}, \mathrm{H}^{-}, \mathrm{SO}_{4}^{++}, \mathrm{HSO}_{4}^{+}{ }^{-}$Probably, in many cases, these ions are attached to molecules of solvent. The degree of dissociation $\alpha=$ (number of dissociated solute molecules)/(total number of solute molecules). α is deduced from the osmotic pressure of the solution, and from its electric conductivity at different dilutions. The osmotic pressure is determined (1) directly, (2) from the raising of the boiling-point, and (3) from the depression of the freezing-point of the solvent by the presence of the solute. The equivalent conductivity (Λ) for different concentrations of any difute solution is assumed to be proportional to the number of ions present. $\boldsymbol{\Lambda}$ approaches asymptotically a limiting conductivity (Λ_{∞}) for extreme dilutions, a state of things when, on this theory, the solute is completely dissociated. $\Lambda_{m} / \Lambda_{\infty}=a$ for the equivalent concentration m. The eathion and anion with their charges $+e$ and $-e$ (for monovalent ions) move in unit electric field in opposite directions with speeds or mobilities u_{+}and u_{-}. The electrolytic current also obeys Ohm's Law, so that $\mathrm{X}_{\kappa}=\left(u_{+}+u_{-}\right) n e$ (Kohlrausch, 1879), where X is the potential gradient in volts per cm ., n the number of tive or -ive ions per c.c., κ the conductivity of the solution in ohm $^{-1} \mathrm{~cm} .^{-1}$. This becomes $u_{+}+u_{-}=1 \cdot 037 \times 10^{-5} \Lambda \mathrm{~cm} . / \mathrm{sec}$., since $\kappa / n=\Lambda / \mathrm{N}$, and $\mathrm{N} e=96,740$ coulombs per gm. equivalent of ions.

The mobility of electrolytic ions has been directly observed by Lodge (1886), Whetham, Orme Masson, and D. B. Steele. The ratio $u_{-}\left(u_{+}+u_{-}\right) \equiv n$ is for the negative ion, the migration ratio or transport number of Hittorf (1853-9). n can be determined, when complex ions are absent, from the change of concentration at the anode and cathode during electrolysis. The mobility of certain organic ions is approximately inversely proportional to their linear dimension a (Laby and Carse). The existence of this relation of Ohm's Law and of a relation between the viscosity (η) of the solvent and the ionic mobilities (Kohlrausch, Hosking, and Lyle) indicates that the motion of the ion through the solution may follow Stokes' Law ($v=\mathrm{F} / 6 \pi \eta \pi$, where F is the driving force), with the numerical constant, 6π, possibly changed.

The dissociation theory postulates the conditions existing in very dilute solutions. The role of the medium is rather neglected (Lowry, Science Progress, 1908). The dissociation should be large for a solvent with a high dielectric constant, for then the atiraction between the cathion and anion is small (Thomson and Nernst). This is generally true (Walden).
(Kohlrausch and Holborn, "Leitvermögen der Elektrolyten;" Whetham's "Theory of Solution.")

MIGRATION RATIOS

Hittorf's migration ratio or transport number of the anion, $n=u_{-} /\left(u_{+}+u_{-}\right) ; m$ $=$ equivalent concentration per litre ; $t^{\circ}=$ temp. of observation.

Solute:	$t^{\circ} \mathrm{C}$	Conc. m.	Ratio n.	Solute.	$t^{\circ} \mathrm{C}$	Conc. m.	Ratio n.	Solute.	$6^{\circ} \mathrm{C}$	Conc. m.	Ratio \%.
Cl	-	. 003	-505, S.D.	AgNO_{3}	17°	-4to'02	.526, H.			(08 to	
KBr	18°	$\{0310$	504, B.	$\mathrm{NH}_{4} \mathrm{Cl}$	20	- 0	507, Be.		18	\{02 0	25, M.
	25	-05	-505, Be.	CaCl_{2}	22	$\stackrel{01}{.005}$.516, Be.	HC	10	$\left\{\begin{array}{c}05 \text { to } \\ 02 \\ 02\end{array}\right\}$	159, N.S.
KNO_{3}	8	I	-497, H.	SrCl_{2}	21	-1	$\cdot 56$, Be.	HNO_{3}.	18	$\cdot 25$	
NaCl	18	$\{03 \mathrm{to})$	-604, B.	BaCl_{2}	18	-1		$\mathrm{H}_{2} \mathrm{SO}_{4}$	11	- 0	$\therefore 17, \mathrm{Be}$
NaNO_{3}	19	(.009 .05	-629, Be.	MnSO_{4}	21	-05	615	KOH	25	'I	B
LiCl	18	$\left\{\begin{array}{l} 03 \text { to } \\ \cdot 008 \end{array}\right\}$	67	CdBr_{2}.	18	$\left\{\begin{array}{c}12 \\ 12 \text { to } \\ \cdot 007\end{array}\right\}$	57		21	05	56, Be.
						\{ 007 \}	5	$\mathrm{AgC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	25	-1	376, L.N.

B, Bogdan ; Be., Bein ; H., Hittorf ; L.N., Löb and Nernst ; M., Metelka ; N.S., Noyes and Sammet ; S.D., Steele and Denison.

86 CONDUCTIVITY OF SOLUTIONS

ELECTRICAL CONDUCTIVITY OF SOLUTIONS

$\kappa_{18}=$ pecific electric conductivity (in ohms ${ }^{-1} \mathrm{~cm}^{-1}$) of the solution at $18^{\circ} \mathrm{C}$.
$p=$ mass of anhydrous solute per 100 gms . of solution.
$\eta=$ the number of gm . equivalents in i c.c. of solution. Gm. equiv. per litre $=1000 \eta$. To find η note that $\kappa / \Lambda=\eta$.
$v=$ volume in litres containing one gm. equivalent of solute $=1 / 1000 \eta$.
$\Lambda=$ equivalent conductivity $=\kappa / \eta,=$ the conductivity in reciprocal ohms of 1 gm . equiv. in solution between electrodes 1 cm . apart. The chemical equiv. of, for example, " $1 / 2 \mathrm{CaCl}_{2}$ " is $111 / 2$.
Temp. coefficient $=\left(d_{\kappa} / d t\right) / \kappa_{18}$. (See Kohlrausch and Holborn, "Das Leitvermögen der Elektrolyten" (Teubner).) $\mathrm{K}=$ Kohlrausch ; $\mathrm{G}=$ Grotrian.

CONCENTRATED SOLUTIONS

STANDARD SOLUTIONS FOR CALIBRATING CONDUCTIVITY VESSELS
κ_{18} for the purest water in a vacuum $=.04 \times 10^{-6} \mathrm{ohms}^{-1} \mathrm{~cm}^{-1}$ (Kohlrausch and Heydweiller) ; κ_{18} for conductivity water in air is about $10^{-6} \mathrm{ohms}^{-1} \mathrm{~cm} .^{-1}$; KCl I $n=$ normal $\mathrm{KCl}=74.59 \mathrm{gm}$. /litre at $18^{\circ} \mathrm{C} . ; \mathrm{NaCl}$ sat. = saturated NaCl at temp. t. of experiment. Unit-ohm ${ }^{-1} \mathrm{~cm}^{-1}$. (See Kohlrausch, Holborn, and Diesselhorst.)

Solution.	$0^{\circ} \mathrm{C}$.	8°	12°	16°	20°	24°
NaCl, sat. .	-1345	-1688	$\cdot 1872$	-2063	- 2260	- 2462
KCl, $1 \times$.	-06541	- 07954	-08689	-09441	-10207	-10984
KCl, 1/10 n	- 2715	-00888	-00979	- 01072	- 1167	-01264
KCl, 1/50 n	.00152	-00190	-00209	-00229	-00250	-00271
KCl, $1 / 100 n$	$\cdot 00078$	-00097	$\cdot 00107$	-001173	$\cdot 001278$. 001386

87
 CONDUCTIVITY OF SOLUTIONS

EQUIVALENT ELECTRIC CONDUCTIVITY A OF DILUTE AQUEOUS SOLUTIONS
Extrapolated numbers are indicated by (). A for infinite dilution is given under "O." Observers: inorganic solutes, Kohlrausch; organic, Bredig, Zeit. Phys. Chem., 1894.

EQUIVALENT ELECTRIC CONDUCTIVITY OF NON-AQUEOUS SOLUTIONS
$v=1 / m=$ volume in litres in which 1 gm . equivalent is dissolved. (See Tower, "Conductivity of Liquids," 1908.)

$\begin{aligned} & \text { Sol- } \\ & \text { vent. } \end{aligned}$	Solute.	$t^{\circ} \mathrm{C}$	v	Λ	v	Λ	Solvent.	Solute.	$1^{\circ} \mathrm{C}$.	v	Λ	v	Λ
NH_{3}	KBr	-38°	5740	$317{ }^{\circ} 6$	12410	3297	POCl_{3}	$\mathrm{N}^{\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{l}}$	$25{ }^{\circ}$	750	38.5	1500	44^{3}
	AgNO_{3}	-15		188	192	110	Formic	$\left\{\begin{array}{l}\mathrm{KCl}\end{array}\right.$	25	256 5.86	58	512	${ }^{\text {3 }}$
H		0	392	298	1024	308	acid	$\mathrm{HCl}^{\text {cher }}$	25	$5 \cdot 86$	$32 \cdot 8$	46.9	$33^{\circ} 2$
	$\mathrm{S}\left(\mathrm{CH}_{3}\right.$	0	512	327	1024	332	Acetone	KI	18	1157	155	2315	163
SO	C	0	1024	112.5	2048	134.5	"	LiCl	18	10	$49^{\circ} 8$	13.8	$99^{\circ} 5$
	$\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} 1$	-	512	157.1	1024	167\%	"	AgNO_{3}	18	288	157	576	$17 \cdot 6$
$\mathrm{AsCl}^{\text {a }}$	$\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{I}$	25	150	63.2	750	$59^{\circ} 7$							

IONIC MOBILITIES

MOBILITIES OF IONS IN LIQUIDS

The mobility of the anion $=u-=1.037 \times 10^{-5}$ An. ($n=$ Hittorf's number)
Example.For $\mathrm{KCl}, \Lambda_{\infty}=130^{1} 1, n=505, \quad \therefore u_{-}=1.037 \times 10^{-5} \times 505^{5} \times$ $130.1=6.8 \times 10^{-4} \mathrm{~cm} . / \mathrm{sec}$. for Cl ions at 18°. Observers, Kohlrausch and Bredig ; the latter's values have been multiplied by $1 \cdot 1 \times 10^{-5}$ to bring them to $\mathrm{cm} . / \mathrm{sec}$. Unit- $10^{-5} \mathrm{~cm} . / \mathrm{sec}$. ${ }^{*} \frac{1}{2} \mathrm{Ca}$, etc. : the actual ionic velocity of the divalent ions is half the value stated here; these values, however, fit the equations given on $\mathrm{p}: 85$.

Ion.	$418{ }^{\circ}$	Ion.	${ }^{18} 18$.	Ion.	i 18°.	Ion.	48°	Ion.	$u 25^{\circ}$.	Ion.	425°.
H		NH_{4}	66.3	Zn *	$48 \cdot 4$	F	$48 \cdot 3$	HCO_{2}	$56 \cdot 3$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{H}_{3} \mathrm{~N}$	
	$34 \cdot 6$	Tl.	68.4	Cu^{*}.	49	Cl	67.8	$\mathrm{CH}_{3} \mathrm{CO}_{4}$	$42 \cdot 1$	$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{P}$.	
Na	45°	Ca^{*}	53.7	${ }^{\text {Ag. }}$	56	Br	70	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CO}_{2}$	377	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{H}_{3} \mathrm{~N}$	
		Sr^{*}	53.6	Cd**	49°		68.8	n. $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CO}_{2}$	33.8	aniline	
	70.5	Ba^{*}	57.5	$\mathrm{Pb*}$.	63.5	NO_{3}	64	Iso-	34°	$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{HN}$	48.5
	70:5	Mg*	47%	OH	180	$\mathrm{SO}_{4}{ }^{*}$	71	$\mathrm{CH}_{3} \mathrm{H}_{3} \mathrm{~N}$	53.4	$\left(\mathrm{CH}_{3}\right)_{4} \mathrm{As}$.	$41: 8$

DIRECTLY OBSERVED MOBILITIES

Deduced from the observed movement of an ionic boundary. $m=$ equivalent concentration. Unit- $10^{-5} \mathrm{~cm} . / \mathrm{sec}$. at $18^{\circ} \mathrm{C}$. (See Denison and Steel, Phil. Trans., 1906.)

Ion. m	u	Ion.	m	u													
K	-5	55.3	Na	I	31.8	Ba	5	33	Mg	$\cdot 2$	16.7	Cl	\cdot	52.9	SO_{4}	2	30.4

ELECTROMOTIVE FORCES AND RESISTANCES OF CELLS

The E.M.F's given are for cells on open circuit, and are only approximate ; in the case of primary batteries they refer to freshly made up cells. The internal resistances quoted are only typical; they vary very widely in practice. With m niny primary cells the E.M.F. drops and the internal resistance increases as the cell ages. Nearly all modern dry cells are modified Leclanché batteries.
(See Slingo and Brooker's "Electrical Engineering.").

MAGNETIC INDUCTION

塁 = magnetic force
 $\mathrm{E}=$ intensity of magnetization
 $=$ magnetic moment per $\mathrm{cm} .^{3}$
 $=$ pole strength per $\mathrm{cm} .^{2}$

$13=$ magnetic induction, or flux density

B, W, and 5 are in lines per cm^{2}, and are vector quantities.
Unit: 4π lines start from unit magnetic pole.
$\mu=$ permeability $=13 /$ / \mathbf{h}. See p. 6.
$\mathrm{H}=$ susceptibility $=\mathrm{E} / \mathrm{K}_{\mathrm{G}}=(\mu-1) /(4 \pi)$. See p. 6.
Coercivity, $\exists_{\mathrm{m}}=0$, is the demagnetizing force required to make $33=0$ after saturation.
Coercive force is the demagnetizing force required to make $\overline{\mathfrak{b}}=0$ after some particular field strength.

Remanence, $\mathcal{B}_{H}=0$, is the induction remaining when the magnetic force is removed after some particular field strength.

The work done, i.e. hysteresis loss, $Q_{e,}$, in taking a cm^{3} of magnetic materiat through
 for the hysteresis loss is $\eta 13_{\text {max. }}^{n}$, where η is a constant, and generally $\eta_{\xi}=1 \cdot 6$. The magnetic properties of a material depend not only on its chemical composition, but on its previous mechanical and heat treatment ; thus only general characteristics are indicated below.

Heusler alloys (discovered by Heusler in 1903) are composed of Cu, Mn, and $\cdot \mathrm{Al}$. They do not show the Kerr effect.

Good permanent magnet steel contains about $5 \% \mathrm{~W}$ and $6 \% \mathrm{C}$, is free from Mn, Cu, Ni , and Ti , and is hardened at $850^{\circ} \mathrm{C}$. (Hannack, 1909). Cast iron, chilled from $1000^{\circ} \mathrm{C}$., may also be used (Peirce and Campbell).

References.-Pure iron, Peirce, Amer. Four. Sci., 27 and 28, 1909; Terry, Phy: Rev., 1909; iron and manganese, Burgess and Aston, Phil. Mrag., 1909; Heusler alloys, Stephenson, Phy. Rev., 1910. (Ewing, "Magnetic Induction in Iron," and Kohlrausch, "Prakt. Phys."),

MAGNETIC SUSCEPTIBILITIES OF THE ELEMENTS, ETC.

The susceptibility $\mathrm{H}=\mathrm{E} / \mathrm{z}$ 位 $=(\mu-1) /(4 \pi)$. $\mathrm{H}=0$ for a vacuum. The susceptibility depends very much on the purity of the material, especially upon the absence of iron. For pure elements II appears to be independent of $3 \boldsymbol{\xi}$, except possibly in the case of Mg, Sb, and $\mathrm{Ru} . \mathrm{H}$ is a periodic property of the atomic weight ; for example, $\mathrm{P}, \mathrm{As}, \mathrm{Sb}$, and Bi are comparatively strongly diamagnetic.

The values below are per grm. at $18^{\circ} \mathrm{C}$., except where some temperature is specified. The gases are per $\mathrm{cm}^{3}{ }^{3}$ at 1 atmos. [Honda (Ann. d. Phys., 19ro) used purest available materials and corrected -H for any traces of iron ; see also P. Curie, CEuvres, Paris, 1908.] + means paramagnetic ; -, diamagnetic.

Elom.	H	Obs.	Elem.	H	Obs.	Elem.	H	Obs.
Solids	$\times 10^{6}$		Solids			Solids		
$\stackrel{\text { Al }}{ }$	$\times 65$ +65	L., W., H.	(contd.)	$\times 10^{-6}$ -9		(contd.)	$\times 10^{-6}$ +15	
Sb As	- 95 -.31	H. H.	$\stackrel{\mathrm{P}}{\mathrm{Pt} .}$.	- 9 $+1 \cdot 32$	H., B., C., Q.	V.	+	
As	- 31 -14	B. C. $\stackrel{\text { D. E.W. }}{ }$	Pt.	+132 +4		Zn Zr .	- 15 $-\quad 45$	K., L., H.
Bi B .	-14 -71	B. C. D. E.W.	R K .	+14 $+1 \cdot 1$	H., F.	Zr .	- 45	
Cd	- 17	H.	Ru	+ +56	H.	Liquids		
Cr	$+3 \cdot 7$	H.	Se	-32	H., C.	${ }_{\mathrm{Hr}}^{\mathrm{Br}}$. \cdot	- 41	
Cu	--087	II.	Si.	- 12	H.	Hg_{N}.	- 19 $+\quad 28$	F., M.,
Au	- 15	K., H.	Ag	- - 2	H.	N liq. .	$+\quad 28$ $+\quad 324$., D.
1	- 36	B., C., H.	Na	$+51$	${ }^{\text {H. }}$	$\xrightarrow{\mathrm{O}} \mathrm{H} \mathrm{liq}, 15^{\circ}$.	+324 -837	Dub.
Ir.	+ 15	H.	S.	-5	B.,C., L., K., H.	${ }^{\mathrm{H}_{2} \mathrm{O}, 15} 5^{\circ}$	- 837 -77	Du S .
Fe	See	p. 89.	Ta	+93	F ${ }_{\text {H. }}$	$\mathrm{H}_{2} \mathrm{O}, 15^{\circ}$		
Pb	- 12	H., K., L.	Te	-32	E., C., H.			
Mg	+ 55	$\stackrel{H}{H}$	Tl.	c. -3	H.	Air, 16°	+.032	$\mathrm{Du}_{\mathrm{m}} \mathrm{~B} .$
Mn	+ 10.6 ?	H.	Th	+1.8	H.		- 010	$\mathrm{T} .$
Mo	+ 04	H.	Sn	+.025	К., H.	He	- 002	T.
Nb	+ 13?	${ }_{\mathrm{H}} \mathrm{H}$	Ti.	c. +2	H	H	-008	
Os Pd	+ 04 $+\quad 58$	H., K., C., F.	W.	+.33 c. +9	M., H.		+ 024 $+\quad .123$	$\begin{gathered} \text { Du B. } \\ \text { Du B., Q. } \end{gathered}$

B., E. Becquerel, 1855 ; C., Curie, 1895 ; D., Dewar, 1892 ; Du B., Du Bois; E., Ettingshausen ; F., Finke ; F. D., Fleming and Dewar ; H., Honda ; K., Königsberger, 1901 ; L., Lombardi, 1897 ; M., St. Meyer ; Q., Quincke ; S., Scarpa, 1905 ; T., Tïnzler, 1907 ; W., Wills, 1898.

TEMPERATURE AND MAGNETIZATION

The magnetic moment (M) of a magnet diminishes as the temperature (t) rises. In $\mathrm{M}_{t}=\mathrm{M}_{\mathrm{o}}(\mathrm{I}-a t)$, a varies widely, but is of the order ${ }^{\circ} 0003$ to ${ }^{\circ} 001$. The permeability μ also depends on the temperature. There is a critical temperature' above which μ is very small; in the case of iron it is one of the recalescence temperatures, and is the same as for carbon steels containing up to 45% of C.

The critical temperature of a metal is not perfectly definite, but depends to some extent on whether the metal is being heated or cooled.

Substance.	Crit. Temp.	Observer.	Substance.	Crit. Temp.	Observer.
Iron . $\#$ $\#$ "	$\begin{gathered} 690^{\circ}-870^{\circ} \mathrm{C} . \\ \text { c. } 895 \\ 855-867 \\ 757 \\ 1075 \end{gathered}$	Hopkinson Roberts-Austen Osmond Weiss, 1907 Stifler, 19 II	Nickel, 95%. Magnetite". Heusler alloys Stalloy	$\begin{array}{r} 310^{\circ} \\ 377 \\ 582 \\ \text { c. } 300 \\ 760 \end{array}$	Hopkinson Weiss, 1907 Gray, 19003 Hadfield

STEINMETZ'S COEFFICIENT

Values of η in Steinmetz's formula $\eta \mathbf{3}_{\text {max. }}^{\mathbf{r}}$. for the hysteresis loss in ergs per c.c. per cycle. $B_{\text {max }}$ is the maximum value of the induction.

Substance.	η	Substance.	η
$3 \frac{1}{2} \%$ Silicon iron (Stalloy)	-0007	Grey cast iron.	. 013
Good transformer iron	. 0011	Nickel .	-012 to 038
Dynamo cast steel .	-0026	Cobalt	. 012

TERRESTRIAL MAGNETIC CONSTANTS

Magnetic observatories no longer remain in large cities owing to electric tram disturbances, and thus many of the places for which reliable data exist are not generally known. The general locality of the station is indicated in many cases below.

Magnetic constants obtained in most physical laboratories are usually abnormal owing to the proximity of iron in some form.

Much of the data below is derived from the Reports of Kew Observatory, and the publications of the United States Coast and Geodetic Survey.

A W declination means that the N-seeking end of the magnetic needle points west of true north; a N inclination means that the same end of the needle points downwards.

H and V are the horizontal and vertical components of the earth's magnetic field.
(See Chree, "Terrestrial Magnetism," Encyc. Brit., 1 Ith edit., 1911.)

Place.	Latitude.	Longitude.	Year.	Declination.	Inclina tion.	H.	จ.
North magnetic	$70 \quad 5 \mathrm{~N}$	$9645 \mathrm{~W}$				c.g.s.	c.g.s.
South magnetic pole*	7225 S	154 E	1908		9000.5	\bigcirc	
British Isles							
Aberdeen (University)	579 N	27 W	1909	1634 W	7039 N	- 63	-464
Eskdalemuir (Dumfries)	5519 N	312 W	1909	1830 W	6939 N	-1684	4519
Falmouth (Cornwall).	509 N	55 W	1909	1748 W	6631 N	-1880	-4327
Greenwich	5128 N	- 0	1916	1447 W	6653 N	-1849	-4333
Kew	5128 N	- 19W	1909	1611 W	670 N	-1851	-4359
Leeds (University)	5348 N	133 W	1909	$18 \quad 2 \mathrm{~W}+$	6835 N	-176	-449
St. Helier (Jersey).	4912 N	${ }_{2} 25 \mathrm{~W}$	1907	11627 W	6535 N 68		
Stonyhurst (Lancs.)	5351 N	228 W 1015 W	1909	1729 W 2050 W	6843 N 6815	-1742	.4472 .4481
Valencia (S. W. Ireland)	5156 N	1015 W	1909	2050 W	6815 N	$\cdot 1788$	4481
Africa-							
Cape Town	3356 S	1829 E	1885	3015 W	56 or		
Helvan (Cairo).	2952 N	3121 E	1908	256 W	4039 N	3003	$\cdot 2579$
Mauritius. -	2065	5733 E	1908	914 W	5345 S	2342	-3193
America-							
Agincourt (Toronto).	4347 N	7916 W	1906	545 W	7436 N	-1640	-5950
Cheltenham (Washington)	$3844 \mathrm{~N}$	7650 W					
Fairhaven (Mass.) .	41 37 N	7054 W	1908	1227 W	738 N	- 1736	-5724
Goat Island (California)	3749 N	12222 W	1909	1753 E	6211 N	- 2525	4786
Greenwich (New York).	41 on	7337 W	1908	1014 W	7213 N	$\cdot 1822$	-5680
Rio de Janeiro.	2255 S	43 II W	1906	855 W	1357 S	- 2477	-0616
Santiago (Chili) Sitka (Alaska)	3327 57 57	7042 W 13520 W	1906	1419 E 3012 E	3012 S 7437 N		
Staukegan (Chicago).	[$\begin{aligned} & 57 \\ & 42 \\ & 21\end{aligned}$	$1 \begin{aligned} & 13520 W \\ & 8751 \mathrm{~W}\end{aligned}$	1909	3012 E 239 W	7437 N 7246 N	-1850	-5898

TERRESTRIAL MAGNETIC CONSTANTS (contd.)

Place.	Latitude:	Longitude.	Year.	Declina tion.	Inclination.	H.	v.
Asia -				- ,		c.g s.	
Alibag (Bombay)	1839 N	72.52 E	1908	12 E	23.22 N	3686	
Barrackpore (Calcutta).	2246 N	88.22 E	1907	1 Io E	3030 N	3729	-2197.
Hong Kong	2218 N	114.10 E	1909	- $2 \mathrm{E}^{-}$	3 T I	:3709'	2229.
Australasia-						\% . 35	
Christchurch (N.Z.)	43.32 S	17237 E	1903	16.88 E	67.42 S	$\therefore 2266$	-5526
Honolulu (Hawaii)	21.19 N	$158.4 \mathrm{~W}^{\prime}$	1909	926 E	40.54 N	2917	-2527
Melbourne ${ }^{\circ}$ -	3750 S	14458 E	1901	827 E	6725 S	-2331	- 5602
Sydney	$33,52 \mathrm{~S}$	15112 E	1885	930 E	62.005	-268	$\bigcirc 515$
Europe							
Arctic (Norway) .	6956 N	2258 E	1903	$\bigcirc 43 \mathrm{~W}$	7621 N	$\cdot 1258$	5178
Regions 1 (Spitzbergen).	7741 N	14.50 E	1903	1055 W .	808 N	0942.	5417
Odessa . \because -	4624 N	3048 E	1901	2. $27 . \mathrm{W}$	6218 N	-2188	4168
Pawlowsk (Petrograd)	5941 N	30.29 E	1906	14 E	70.37 N	-1653	4696
Potsdam	5223 N	134 E	1909	911 W	6620 N	-1883.	-4297
Rude Skov (Copenhagen)	5551 N	1227 E	1908	9.43.W	$6845 \mathrm{~N}_{4}$	-1741	-4476
Ucile (Brussels)	5048 N	421 E	1908	13.37 W	662 N	-1906	-4287
Val Joyeux (Paris) -	48.49 N	21 F	1909	1433 W	6444 N	-1973	41779

At the present period we are going through a remarkable secular atferation. For generations H had been steadily rising in Western Europe, but during the last few years a wave of depression has travelled across from the east. H has steadily fallen at Petrograd since about 1900, at Potsdam since about 1905, at Greenwich and Kew since 1907, while in 1909 H was still rising at Falmouth and Valencia: The easterly motion of the declination needle has also increased notably since 1900. Thus secular change data based on, say, the last five years will not serve to prospect the future.

SPARKING POTENTIALS

-The sparking voltages given below are those which will break down non-ionized air at atmospheric pressure and room temperature. The electrodes are equal smooth polished metal balls of various diameters. Russell (Phil. Mag. $\boldsymbol{\sim}$ 1906) gives the dielectric strength of air at atmospheric pressures as between 38,000 and 39,000 volts per cm . for either direct or alternating potentials.
(See Kaye's "X Rays" (Longmans, 1916) for further values.)

Spark	Diameter of balls in ems,				Spark gap.	... Diameter of balls in cims.			
	0.5	1.0	20	5.0		05	1.0	2.0	5.0
ciin.	volts. $\times 10^{3}$	$\begin{aligned} & \text { volts. } \\ & \times 10^{3} \end{aligned}$	$\begin{aligned} & \text { volts. } \\ & \times 10^{3} \end{aligned}$	$\begin{aligned} & \text { volts. } \\ & \times 10^{3} \end{aligned}$	cm.	volts. $\times 10^{3}$	volts. $\times 10^{3}$	volts. $\times 10^{3}$	volts. $\times 10^{3}$
$0 \cdot 1$	$\cdots 48$	\cdots	47	-	0.9	19.6	$25^{\circ}{ }^{\text {c }}$	28.6	$30 \cdot 1$
$0 \cdot 2$	$\because 8.4$	$8 \cdot 4$	$8 \cdot 1$	-	10	20\%2.	26.7	-30:8	- 327
$0 \cdot 3$	113	11.4	11.4	-	$1 \cdot 5$	22	$31^{\circ} 6$	39	46
$0 \cdot 4$	$13 \cdot 8$	144	145		2.0	23	36	47	58
0.5	15%	17.3	17.5	18.4	30	24 है	42	57 \%25.	- 77
0.6	$17 \cdot 2$	19.9	20.4	21.6	40	25		$6 t$	92
$0 \cdot 7$	183.	220	23.2	24.6	$5 \cdot 0$		47 \&	69	105
0.8	19°	241	26°	27.4					

HOMOGENEOUS X-RAYS
Mass absorption coefficients, λ / \hat{q}, measured in Al foil. λ is the absorption coefficient (see p. 107).of the homogeneous characteristic (K) X radiation from a metal; ρ is the density of aluminium foil. For a complete set of values, see Kaye's"X Rays" (Longmans, 1916).

Radiator.	Al	Cr:	Fe	Ni	Co	Cu	Zn	\therefore As	Se	${ }^{-} \mathrm{Ag}^{\prime}$
λ / ρ	3400,	136	$88 \cdot 5$	$59^{\circ} \mathrm{I}$	71.6	47%	39.4	22.5	18.5	25

CATHODE DARK SPACE

The thickness (d) of the Crookes dark space is given by $d=(\mathrm{A} / p)+\mathrm{B} / \sqrt{i}$, where p is the pressure, i the current density, and A and B are constants for each gas. This equation is satisfied very exactly by the ordinary elenientary gases, and a little less so by the gases of the helium group. Unfortunately for the use of the dark space as a ptessure indicator, the current density term in the formula is almost as large as the pressure term for pressures about $1 / 10 \mathrm{~mm}$.

The values of A and B below are for large plane aluminium electrodes. d is measured in cms., ϕ in mms. of mercury. The unit of i is i / lo milliampere per $\mathrm{sq} . \mathrm{cm}$. of cathode, which is about the sort of current density that obtains with an average coil discharge and a moderate-sized cathode.
(See Aston and Watson, Proc. Roy. Soc., 191r.)

Gas.	Hydrogen	Nitrogen	Air	Oxygen
\mathbf{A}	26	-	068	065
\mathbf{B}	43	40	42	057

RECOMBINATION AND DIFFUSION

COEFFICIENTS OF RECOMBINATION a

α is given below in terms of 1000 , where e is the numerical value of the ionic charge : 4.7×10^{-10} in electrostatic units. For air, $\alpha=3320 c=1.56 \times 10^{-10} \mathrm{~cm} .^{3} \mathrm{sec}^{-1}$. Room temp. and pressure.

Gas.	Air.	O_{2}	CO_{2}	$\mathbf{H}_{\mathbf{s}}$
a	3.42, T.; 3.38, Mc.; 3.2, L.; 3.3, H.; 3.32*, E.	$3.38, \mathrm{~T}$	$3.5, \mathrm{~T}$.	$3.02, \mathrm{~T} ; 2 \cdot 94, \mathrm{Mc}$.

E., Erikson, P.M., 1909; H., Hendren, P.R., 1905 ; L., Langevin, A.C.P., 1902; Mc., McClung, P.M., 1902 ; T., Townsend, P.T., $1899 . \quad * 17^{\circ}$ C., $760 \mathrm{~mm} . \mathrm{Hg}$.
a IN AIR AND PRESSURE

| Press. in atmos. . . . | 2 | 5 | 1 | 2 | 3 | 5 | I.. Langevin.
 H., Hendren. | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a (relative values), L. | 5 | 12 | 27 | 30 | 26 | 18 | | | |
| Press. in cms. . . . | 76 | 45 | 25 | 15 | 10 | 5 | 3.5 | 2 | 1 |
| α (absolute values), H. | 3.3 | 2.65 | 2.07 | 1.75 | 1.55 | 1.31 | 1.25 | 1.15 | $1 . c 0$ |

a IN AIR AND TEMPERATURE
Air at constant density. (E., Erikson ; P., Phillips, Electrician, 1909.)

Temp. ${ }^{\circ} \mathrm{C}$.	-179°	-68	12	64	100	155	Temp. ${ }^{\circ} \mathrm{C}$.	15°	100	155	176
α (in terms 1000e), E ,	$7 \cdot 5$	$5 \cdot 61$	347	2.31	1×73	1.38	α (relative values), \mathbf{P}.	1	50	40	36

IONIC COEFFICIENTS OF DIFFUSION D

Rate of interdiffusion (in $\mathrm{cm}^{2} \mathrm{sec}^{-1}$) of gaseous ions in dry air: $\mathrm{D}+$ for positive, D- for negative ions. (Townsend, Phil. Trans., 1899, 1900.)

Ionisation . . .	Röntgen Rays.	β and γ Rays.	Ultra-violet light.	Point discharge.
D+at 76 cm .	. 028	. 032	-	.0247,.0216
D-at $76 \mathrm{~cm} .$.	. 043	$\bigcirc{ }^{\circ} \mathrm{4} 3$	-043	$\cdot 037,032$

gases ionized by röntgen rays

Air, CO_{2}, and hydrogen at $15^{\circ} \mathrm{C}$. and 760 mm .

	$\begin{array}{\|l\|l} \hline D_{-} & \\ \hline & \\ \hline 043 & \mathrm{C} \\ 04 & \mathrm{H} \\ \hline \end{array}$	Dry Gas.		D_{+}	D-	Moist Gas.	$\mathrm{D}_{+} \mathrm{D}$	D-			ist G		D_{+}	D-
		$\mathrm{CO}_{2}\left\{\begin{array}{c} \text { dried } \\ \text { by } \\ \mathrm{HaCl}_{2} \end{array}\right\}$		-123.	. 026	$\mathrm{Air}_{\mathrm{O}_{2}}\left(\begin{array}{c}\text { sat. } \\ \text { with } \\ \mathrm{H}_{2} \mathrm{O}\end{array}\right\}$	$\begin{array}{r} 032 \\ 0.0 \\ 0 \\ 0 \end{array} 0^{\circ} \mathrm{C}$.035					-024	$\cdot 025$ $\cdot 142$
AIR IONIZED BY β AND γ RAYS														
Press. p. in ems.	$77 \cdot 2$	55	40	30.	20	Press. p. in oms.		$77 \cdot 2$		55		40	30	20
$\left\lvert\, \begin{aligned} & \mathrm{D}_{+} \text {at } 15^{\circ} \mathrm{C} . \\ & \mathrm{p} \mathrm{D}_{+} \quad " \end{aligned}\right.$	$\begin{array}{r}0317 \\ 245 \\ \hline\end{array}$		$\begin{array}{r} 0578 \\ 2.31 \\ \hline \end{array}$	$\begin{array}{r} .078 \\ 2.34 \\ \hline \end{array}$		D-at $15^{\circ} \mathrm{C}$.		$\begin{array}{r}0429 \\ \hline\end{array}$			$\begin{array}{r} 0542 \\ 2.98 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 078 \\ 3.12 \\ \hline \end{array}$	$\begin{array}{r} 103 \\ 3^{\circ} 09 \\ \hline \end{array}$	$\begin{aligned} & 1 \cdot 55 \\ & 3 \cdot 1 \\ & \hline \end{aligned}$
						pD-			$3 \cdot 3$					

A.C.P., Ann. de Chim. et de Phys.; P.M., Phil. Mag. ; P.R., Physical Keview; P.T., Phil. Trans.

MOBILITIES OF IONS IN GASES

Velocities of ions are in cm . per sec. for unit field, or in $\mathrm{cm} .^{2} \mathrm{sec}^{-1}$ volt ${ }^{1}$ at temp. and press. of room. $\mathrm{K}_{+}=$mobility of positive ion, K_{-}of negative.

For moist air (i.c. saturated with $\mathrm{H}_{2} \mathrm{O}$), $\mathrm{K}_{+}=\mathrm{r}^{\cdot} 37, \mathrm{~K}_{-}=\mathrm{I}^{\prime} 51$.
For dry air (dried by CaCl_{2}), $\mathrm{K}_{+}=1 \cdot 36, \mathrm{~K}_{-}=1.87$. (Zeleny (air blast method), Phil. Trans., 1900.)

* M ean $=\left(K_{+}+K_{-}\right) / 2$.

For mobilities of natural ions in air, see p. 105.

: IONIC MOBILITY AND PRESSURE
Air ionized by Röntgen rays. (Langevin, A.C.P., 1903.)

Press. cm.	$7 \cdot 5$	20	$41 \cdot 5$	76	$143 \cdot 5$	Press. cm.	$7 \cdot 5$	20	$41 \cdot 5$	76	142
\mathbf{K}_{+}	$14 \cdot 8$	$5 \cdot 45$	$2 \cdot 61$	$1 \cdot 40$	0.75	\mathbf{K}_{-}	$21 \cdot 9$	$7 \cdot 35$	$\cdots \cdot 31$	17	0.9

IONIC MOBILITY AND TEMPERATURE
Air at 76 cm . press. ionized by Röntgen rays. (Phillips, P.R.S., 1906.)

Temp. ${ }^{\circ} \mathrm{C}$.	$138{ }^{\circ}$	126°	110°	100°	75°	60°	12°	-64	-179°
$\mathbf{k}_{+}{ }^{\circ}$	$2 \cdot 00$	1.95	1.85	1.81	1.67	1.60	r39	0.945	$0 \cdot 235$
\mathbf{E}_{-}	249	2.40	2.30	2.21	$2 \cdot 12$	$2 \cdot 00$	$1 \cdot 785$	$1 \cdot 23$	0×235

IONIC MOBILITIES IN LIQUIDS AND SOLIDS
Ionized by radium rays. (Bohm-Wendt and v. Schweidler, Phys. Zcit., 1909 ; Bialobjeski, Compt. Rend., 1909.)

Substance.	($\mathbf{K}_{+}+\mathbf{x}_{-}$)	Substance.	$\left(\mathbf{K}_{+}+\mathbf{K}_{-}\right)$
Petroleum ether	3.8×10^{-4}	Ozokerite at 100°	51×10^{-1}
Vaseline	5.3×10^{-6}	, 80°	$35^{\circ} 0 \times 10^{-4}$

A.C.P., Ann. ce Chim. et de Phys., P.M., Phil. Mag. ; P.R.S., Proc. Roy. Soc. ; V.D.P.G., Verh. Deutsch. Phys. Gesell.

IONIC MOBILITIES AT HIGH TEMPS

K in $\mathrm{cm} . \mathrm{sec}^{-1}$ per volt $\mathrm{cm} .^{-1}$ for coal-gas flames in most instances. The ionic mobility is independent of the acid of the salt. Gold's and Wilson's values for Kagree the best with existing theory, which makes $\mathrm{K}_{-}=\mathrm{Xe} \mathrm{\lambda} / \mathrm{mu}=17,000$ at $1800^{\circ} \mathrm{C}$. (Gold). X is the electric field per cm ., λ is the mean free path, and u the velocity of the corpuscle.

Salt.	Temp.	\mathbf{K}_{+}	K	Observer.
$\mathrm{Cs}, \mathrm{Rb}, \mathrm{K}, \mathrm{Na}, \mathrm{Li}$.	Flame, c. 2000	62	c. 100	H. A Wilson, P.T., 1899
1/20.normal KCl . .	Flame	260	1400	Marx. Ann. der Phys.,
NaCl ar. ${ }^{\text {a }}$.		340	1800	1900
1/256 normal K salt	Flame, c. 2000°		1320	
$1 / 16$ normal Na salt			1280	oreau, fourn.de Phys.,
Concentrated sols. alkalies.		80		1903
$\mathrm{C} \mathrm{s}, \mathrm{Rb}, \mathrm{K}, \mathrm{Na}, \mathrm{Li}$	Air at 1000°	$7 \cdot 2$	26	A. Wilson, P.T., 1899
${ }_{\mathrm{Ba}, \mathrm{Nr}} \mathrm{Ca}$		$3 \cdot 8$		and P.M., 1906
K, Na.	Flame, c. 1800°	-	8000	Gold, P.R.S., 1907, ratio of potential grad. to current
K.	Flame, c. 1800		13,00	Poten. grad., and gas velocity
$\mathrm{K}_{2} \mathrm{CO}_{3}$.	Bunsen burner	-	9600	H. A. Wilson, P.R.S
Na	Flame, c. 2000°	-	1770	Moreau, C.R., 1909

CONDENSATION OF VAPOURS

Expansion $=v_{2} / v_{1}$, where v_{1} is the volume of the gas before, and v_{2} the volume after expansion. Supersaturation of the vapour (at end of cooling by expansion) necessary for condensation $=S=$ (density of vapour when drops are formed)/(density of saturated vapour at the same temp.). (See J. J. Thomson, "Conduction of Electricity through Gases.")

CONDENSATION ON NATURAL IONS AND MOLECULES
Dust-free gas saturated with water-vapour. (C. T. K. Wilson, P.T., 'y7, '9y, 'oo.)

Gas.	Rain-like Condensation.		Cloud-like Condensation.		- Gas.	Rain-like Condensation.		Cloud-like Condersation.	
	v_{2} / v_{3}	S.	v_{2} / v_{1}	S.		v_{2} / v_{1}	S.	v_{2} / v_{1}	S.
Air	1.252 -	$4^{\circ} 2$	$1 \cdot 38$	$7 * 9$	CO_{2}.	$1 \cdot 365$	$4^{\circ} 2$	1.535	$7 \cdot 3$
O_{2}	$1 \cdot 257$	43	$1 \cdot 38$	799	Cl_{2}	$1 \cdot 3$	$3 \cdot 4$	1.45	$5{ }^{\circ} 9$
N_{2}	1.262	$4 \cdot 4$	$1 \cdot 38$	$7 \cdot 9$	H_{2}			I. 38	$7 \cdot 9$

CONDENSATION IN AIR IONIZED BY RÖNTGEN AND RADIUM RAYS
(L., Laby, Phil. Trans., Igo§; P., Przibram, Wien Ber., 1906.)

Vapour and Observer.	Ion.	v_{2} / v_{1}	S.	Vapour and Observer	Ion.	v_{2} / v_{1}	S.
Water (C. T. R. Wilson)	-	$1 \cdot 25$	4.15	n-Butyric acid,		$1 \cdot 38$	15°
Water (C. T. R. Wilson)	$+$	131	$5 \cdot 8$	iso-Butyric acid, L.		$1 \cdot 36$	13.3
Et. acetate, L.	$+$. 148	$8 \cdot 9$	iso-Valeric acid, I.	?	1.22	6.0
Me. butyrate, L.	$+$	133	$5 \cdot 3$	Methyl alcohol,-	+	125	3.1
Me. iso-butyrate,		135	$5 \cdot 2$	Ethyl alcohol, P.	4	117	${ }^{2} 3$
Propyl-acetate, L	$+$	$1 \cdot 31$	$5{ }^{\circ}$	Propyl alcohol, P.		118	3.0
- Et. propionate, L		1.41	7×8	iso-Butyl alcohol, 1		$1 \cdot 2$	$3 \cdot 6$
Formic acid, L.	?	1.78	$25^{\circ} 1$	iso-Amyl alcohol, P		122	55
Acetic acid, L. :	$+$	1.44	$9 \cdot 3$			1.18	4
Propionic acid, L. .	?	134	94	Chloroform, 1	+	154	3°

[^16]
NE FOR ELECTROLYTIC IONS

NE is given both in electrostatic units (E.S.U.) and electromagnetic units (E.M.U.).
N is the number of molecules in a c.c. of gas at $76 \mathrm{~cm} . \mathrm{Hg}(g=980 \cdot 6)$ and $t^{\circ} \mathrm{C}$., and E is the charge on the monovalent ion in electrolysis.

Antecedent data.-1 coulomb deposits 1.11827 mgm . Ag. At. wt. of Ag , 107.88 ; of $\mathrm{H}, 1 \cdot 008$. Density of $\mathrm{H}_{2}=8.987 \times 10^{-5} \mathrm{gm}$. per c.c. at $0^{\circ} \mathrm{C}$.

Gas.	E.S.U.	E.M. ${ }^{\text {I }}$.	Gas.	E.S.U.	E.M.U.	Gas.	E.S.U.	E.M. $\mathbf{M}^{\text {I }}$
	$\times 10^{10}$			$\times 10^{10}$			$\times 10^{10}$	
H_{2} at $\mathrm{o}^{\circ} \mathrm{C}$.	$1 \cdot 29015$	0.4300	O_{2} at 0°	$1 \cdot 2924$	$0 \cdot 4308$	Ideal at 0°	$1 \cdot 2913$	0.43044
H_{2} at $15^{\circ} \mathrm{C}$.	1.2230	0.4077	O_{2} at 15°	I-2248	$0 \cdot 4083$	gas ${\text { at } 15^{\circ}}^{\circ}$	1.224 1	0.40803

Ne FOR GASEOUS IONS

N is the number of molecules per c.c. of air at room temp. and $76 \mathrm{~cm} . \mathrm{Hg} ; e$ is the ionic charge in E.S.U., c_{-}for negative and c_{+}for positive ions.

Ionization.	Ne	Ne+	Observer.
X rays .	1.23×10^{10}	2.41×10^{10}	Townsend, P.R.S., 1908, 1909.
Ra rays	124×10^{10}	1.26 to 1.37×10^{10}	Haselfoot, P.R.S., 1909.

Ne CALCULATED

In E.S.U., $\mathrm{Ne}=3.04 \times 10^{8} \times \mathrm{K} / \mathrm{D}=3.04 \times 10^{8} \times 1.40 / 0.028=1.52 \times 10^{10}$ for positive air ions at 76 cm . and room temp. For D and K, see pp. 94, 95.

Gas.	$\mathrm{Ne}+$	$\mathrm{Ne}-$	Gas.	$\mathrm{Ne}+$	$\mathrm{Ne}-$		$\mathrm{No}+$	N0-
Air.	$1 \cdot 52 \cdot 10^{10}$	$1 \cdot 26.10^{10}$	$\begin{aligned} & \mathrm{H}_{2} \\ & \mathrm{CO}_{2} \end{aligned}$	$1.50 \cdot 10^{10}$	$\begin{aligned} & 1 \cdot 23 \cdot 10^{10} \\ & 102 \cdot 10^{10} \end{aligned}$	Mean $\{$	$1 \cdot 42 \cdot 10^{10}$	$1 \cdot 22 \cdot 10^{10}$
O_{2}	$1 \cdot 62 \cdot 10^{10}$	$1 \cdot 38 \cdot 10^{10}$		$107 \cdot 10^{10}$			$1 \cdot 32$	10^{10}

THE IONIC CHARGE

e $=4.77 \times 10^{-10}$ E.S.U. $=\mathbf{1 . 5 9} \times \mathbf{1 0}^{-20}$ E.M. U., as a mean of the latest determinations. Sce Millikan, P.M., July, 1917.

Ionization.	Method.	- in E.S.U.	Observer.
Röntgen rays ; nega- tive ions.	By measuring total charge on a cloud and obtaining num-		
Ultra - violet light on metal ; negative ions	ber of ions from size of drops by Stokes' law.	6.8	.
Röntgèn rays; negative ions.	Force (by Stokes' law) exerted by an electric field on a singly charged drop.	$3^{*} 11$	$\mathrm{n},$
Radium rays ; ions.	The observer's original method.	$3 \cdot 4$	J. J. Thomson, Proc. Camb. Phil.Soc., 1903.
Charged spra trolytic O_{2}.	Total charge on a cloud. No. of ions from weight of cloud and size of drops, using Stokes' law.	3°	Townsend, Proc. Camb. Phil.Soc., 1897.
	By counting a particles and measuring their total charge.	4.65	ford \& Gei- $\text { . } 1 . S ., 1908 .$
Electrolytic ions.	By counting colloid particles.		$\text { rin, C.K., } 1908 .$
Charged spray of clectrolytic O_{2}.	By H. A. Wilson's method, above.	4%	$\begin{aligned} & \text { Lattey, P.M., } \\ & \text { 1gog. } \end{aligned}$
a particles (Polonium) ; charge $=+2 e$.	By counting a particles, and measuring their total charge.	479	Regener, Berl. Ber., 1909.
Electrolytic ions.	From Brownian movements.		Broglie, Le R.,
Radium rays; negative ions.	By H. A. Wilson's method, above	$\left\{\begin{array}{l} 4.67 " \\ 4 \cdot 67 " \\ 4.77 \end{array}\right.$	Begeman. [1909. Millikan, P.M.,'17

C.R., Cumples Rendus; Le R., Le K'adiun ; P.M., Phil. Mag.; P.R.S., Proc. Roy. Soc.

NUMBER OF MOLECULES IN A GAS

$\mathrm{N}=$ the number of molecules in a gram molecule of gas (Perrin, Compt. Rend., 1908 ; Perrin and Dabrowski, C.R., 1909-by observations on colloidal particles). The theoretical value is $\mathrm{N}=\mathrm{NE} / e=2.894 \times 10^{14} /\left(4^{7} 77 \times 10^{-10}\right)=6.06 \times 10^{23}$.

Method.	Gum mastic.	Gamboge.	Method.	Gum mastic.	Gamboge.
Counting by ultra micro- scope	$\mathrm{N}=7 \cdot 10^{23}$	$\mathrm{N}=7.05 \cdot 10^{23}$	Brownian movements)	$\mathrm{N}=7 \cdot 3 \cdot 10^{23}$	$\mathrm{N}=7 \cdot 10^{23}$

e/m FOR NEGATIVE ELECTRONS

e / m in E.M.U. gm. ${ }^{-1}$. Velocities v in $\mathrm{cm} . \mathrm{sec}^{-1}$. For some other values of e/m see J. J. Thomson's "Conduction of Electricity through Gases," and Wolz, A.d.P., 30, 274, 1909. The mean of Simon's, Becker's, Classen's, Kaufmann's, Wolz's, Bucherer's, and Bestelmeyer's values ise $/ \mathbf{m}_{0}=\mathbf{1} 7 \mathbf{7 2} \times \mathbf{1 0}^{7}$ E.M. U. $\mathbf{g m}_{\mathbf{m}^{-1}}$, where m_{0} is the mass of the electron associated with very small velocities. For the variation of e / m with velocity see p. 99. (See also Schuster, P.R.S., 1890.)

[^17] Rap. C.P., Rapports Congris à Taris; V.D.P.G., Verh. Deutschs. Phys. Gesell.

ELECTRONIC e/m FROM ZEEMAN EFFECT

For a spectrum line of wave-length λ, which becämes normal triplet with a separation of $\delta \lambda$ in a magnetic field H (in gauss, i.e. E.M.U.), Lorentz has shown that $e / m=2 \pi \mathrm{~V} \delta \lambda /\left(\lambda^{2} \mathrm{H}\right)$, where V is the velocity of light; e / m is in E.M.U. gm. ${ }^{-1}$,
 with e / m_{0} above.

Line.	e/m	Observer.	Line.	e / m	Observer.
	$\begin{array}{r}\times 10^{7} \\ \hline 10\end{array}$				
$\mathrm{Hg} 5791,5770$ 5461,4358	1.72 to 2.80	Marchant, P.M.	$\left.\left\lvert\, \begin{array}{ll} 2 \mathrm{n} & 4810 \\ 4722,460 \end{array}\right.\right\}$	2×1.767	$\left\{\begin{array}{l} \text { Cotton \& wel } \\ - \text { C.R., 1907 } \end{array}\right.$
Zn, Cd.	1.6		He	177	$\operatorname{Lohmann}_{1908} P . Z .$
	$1 \cdot 59$	Kent, As. $\mathfrak{F l}$., 1901	$\begin{aligned} & \text { Hg } 5791 \\ & =\quad 5770 \end{aligned}$	$\begin{aligned} & 1.93 \\ & 2.06 \end{aligned}$	Baeyer \&Gehrcke,
Cd 4678		Färber, A.d.P.,	" 4916 !	$\left.\begin{array}{l} 2.00 \\ 1.81 \end{array}\right\}$	$\text { A.d.P., } 1909$
Zn 4680 Cd 4678		1902	" 5790, 5770		Gmelin, A.d.P.,
$\begin{aligned} & \text { Cd } 4678 \\ & \operatorname{Zn} 4680 \end{aligned}$	1×79	Stettenheimer, $\text { A.d.P., } 1907$	" 4916, 4358)	171	1909

ELECTRONIC e/m AND VELOCITY

m_{0} is the electromagnetic mass of the negative electron for infinitely small velocities, m the transverse mass for a velocity $\eta ; \nu / V=\beta$, where V is the velocity of light. (See Lorentz, L'Eclairage Électrique, July, 1905, and "The Theory of Electrons," 1909.) On the theory of Abraham (Gött. Nachr., 1902),

$$
\text { transverse mass } m=m_{03}\left(\frac{I+\beta^{2}}{2 \beta} \cdot \log \frac{I+\beta}{I-\beta}-1\right) / 4 \beta^{2}
$$

β	\| Infinitely small.	0.1	0.5	0.9	0.99	0.999	0.9999	0.999999
m / m_{0}	100	1015	$1 \cdot 12$	181	$3 \cdot 28$	4.96	6.68	10°

On the theory of Iorentz (Versl. Kon. Ac. Wet. Am., 1904) and the relativity theory of Einstein ($A . d . P$., 1905), $m=m_{0}\left(1-\beta^{2}\right)^{-1 / 2}$. This theory has been confirmed by the experiments of Bucherer (A.d.P., 1909) and Wolz (ibid.), using β rays from Ra with velocities from (9 to 2I) $\times 10^{9} \mathrm{~cm}$. per sec. Thus the mass of the negative electron is wholly electromagnetic.

β	m / m.	β	m / m_{0}	β	$m / m{ }_{0}$	β	m / m_{0}	β	$\mathrm{m} / \mathrm{m} \mathrm{m}_{0}$	β	m / m_{0}	β	$m i m$
0.01	$1 \cdot 04$	0.34	1 066	0.48	1.140	0.62	1.274	0.76	1.538	$0 \cdot 90$	$2 \cdot 294$	0.97	4.113
0.05	$1 \cdot 001$	$0 \cdot 36$	1.072	0.50	1-155	$0 \cdot 64$	$1 \cdot 301$	0.78	1-598	0.91	$2 \cdot 412$	0.98	5.025
010	1.005	038	1.08I	0.52	1.171	$0 \cdot 66$	1-331	0.80	1.667	$0 \cdot 92$	$2 \cdot 552$	0.99	7.089
$0 \cdot 20$	1.020	$0 \cdot 40$	I*091	$0 \cdot 54$	1-188	0.68	- 364	$0 \cdot 82$	1.747	0.93	2.721	$0 \cdot 999$	$22 \cdot 36$
0.25	1'033	$0 \cdot 42$	I•102	0.56	$1 \cdot 207$	$0 \cdot 70$	1400	0.84	1.843	0.94	2.931		
0.30	I'048	$0 \cdot 44$	1•114	0.58	1.228	0.72	1441	0.86	1.960	0.95	3.203		
0.32	I'056	$0 \cdot 46$	1-126	$0 \cdot 60$	$1 \cdot 250$	0.74	$1 \cdot 487$	$0 \cdot 88$	2.105	$0 \cdot 96$	3.571		

RH AND v: MAGNETIC DEFLECTION

When negative rays of velocity τ are deflected by a uniform magnetic field H (at right angles to their direction) into a circular path of radius R , then $\mathrm{RH}=$ $v m / e=v \phi(\beta) /\left(e / m_{0}\right)$, where $\phi(\beta)=\left(1-\beta^{2}\right)^{-\frac{1}{2}}$ on Lorentz's theory (see above), and $e / m_{0}=1 \eta 77^{2} \times 10^{7}$ E.M.U. gm. ${ }^{-1}$
v is in $10^{8} \mathrm{~cm}$. sec..$^{-1}$; RH in gauss cm . Example. If $\mathrm{RH}=1210$ gauss $\mathrm{cm} .{ }^{2}$, then $\mathrm{v}=174 \times 10^{8} \mathrm{~cm} . / \mathrm{sec}$.

\checkmark	0	6	12	18	24	30	36	42	48	54	60	66	72	78	84
0	- 0	9	$67 \cdot 8$	102	136	170					346	382	19	456	94
90	532	572	612	653	695	739	784	830	877	926	977	1030	1090	1150	1210
180	1270	1340	1410	1490	1570	1660	1760	1860	1980	2110	2260	2420	2620	2850	3130
270	3490	3970	4660	5800	8330										

[^18] Mag.; P.Z. Phys. Ze.t.

a RAYS

RANGE AND VELOCITY OF a RAYS

Range in cms. in air at 76 cm . and $t^{\circ} \mathrm{C}$. (see Bragg and Kleeman, Phil. Magr, 1905). Initial velocity (v) in cms./sec. (Rutherford, Phil. Mag., 1906, 1907). Some of the velocities are calculated from the ranges of the a particles; RaC, ThC, and Polonium were observed. Energy of RaC a ray $=m v^{2} / 2=\frac{1}{2} v^{2} \cdot 2 e \cdot m / c_{\alpha}$ $=2006^{2} \cdot 10^{18} e /\left(5.07 \cdot 10^{3}\right)=8 \cdot 37 \cdot 10^{14} e=1 \cdot 3 \cdot 10^{-6} \mathrm{ergs}=3 \cdot 1 \cdot 10^{-13}$ calories. Loss of energy in air is proportional to path traversed : thus initial velocity of a particle $=$ (velocity of $\mathrm{RaC} \alpha) \times 347 \sqrt{ } / r+1 \cdot 25 \mathrm{~cm} . / \mathrm{sec}$., where r is the range of particle. Also $v=1077 r^{-1} \beta^{3} \cdot 10^{9} \mathrm{~cm} . / \mathrm{sec}$. (Geiger, P.R.S., 1910)

a Ray.	Range.	Initial Vel.	Obs.	a Ray.	Range.	Initial Vel.	Obs.
	c. $3.4{ }^{\text {cms. }}$	$\begin{gathered} \mathrm{cm} \cdot / \mathrm{sec} . \\ 1.56 .10^{9} \end{gathered}$	Mc.\&R.	Rad.Ac	${ }^{\text {cms. }} 4$.	$\begin{gathered} \mathrm{cm} . / \mathrm{sec} . \\ 1 \cdot 76 \cdot 10^{9} \end{gathered}$	H.
UX	1.07?	-56.10	Hess.	AcX.	$6 \cdot 55$	2.00 "	H.
Io.	$2 \cdot 8$		B.	AcEm	$5 \cdot 8$	1.90""	H.
Ra.	$3.50 / 20^{\circ} \mathrm{C}$.	$1 \cdot 56$	B. \& K.	AcB .	$5 \cdot 5$	1.86 ",	H.
RaEm	4.23 "		B. \& K.	Th. .	3.5	-	
RaA	4.83 "	1.76	B. \& K.	Rad.Th	3.9	1.63"	H.
RaC. .	${ }^{7} \cdot 06$	2.06 "	B. \& K.	ThX .	$5 \cdot 7$	1.89"	$\stackrel{\mathrm{H}}{\mathrm{H}}$
RaF or	$\left\{\begin{array}{l}3.95 \\ 3.95 \\ 3.05\end{array}\right.$	-	K.	ThEm	5.5	$1.96 "$	H.
Polonium	$1 \begin{aligned} & 3.95 \\ & 3.86\end{aligned}$	$1 \cdot 62$,	K. \& M.	$\mathrm{ThBC}^{\text {ThB }}$	5.6 8.6	1.79 $2.25 "$	H. H.

B., Boltwood, A.J.S., May, 1908 ; B. \& K., Bragg \& Kleeman, P.M., 1905 ; H., Hahn, P.M., 1906 ; Hess, Wien. Ber., 1907; K., Kleeman, P.M., 1906; K. \& M., Kucěra \& Masěk, P.Z., 1906 ; L., Levin, A.J.S., 1906; Mc. \& R., McCoy \& Ross, J.A.C.S., 1907.

NUMBER OF a PARTICLES FROM Ra

Number of α particles from Ra without its radioactive products $=3.4 \cdot 10^{10} \mathrm{per}$ gin. per sec. Number of a particles from Ra with its radioactive products $=136 \cdot 10^{11}$ per gm. per sec. (Rutherford and Geiger, Proc. Roy. Soc., 1908).

e/m FOR a RAYS

c / m in E.M.U. per gm. $2 \mathrm{e} / m$ for helium $=2 \mathrm{NE} / \rho=478.10^{3} \mathrm{E} . \mathrm{M} . \mathrm{U} . / \mathrm{gm}$. Mean for $\mathrm{Ra}, \mathrm{Pol}, \mathrm{RaC}=4.82 \cdot 10^{3}$ E.M.U. gm^{-1}. Since the a particle is a helium atom with a charge of $2 e$, these values should be equal. *Final velocity of rays used.

Subst.	Velocity.*	c/m	Observer.	Subst.	Velocity.*	e / m	Observer.
Ra	$\begin{gathered} \mathrm{cm} . / \mathrm{sec} . \\ \mathrm{I} .18 \text { to } \mathrm{I} 74 \cdot 1 \mathrm{o}^{9} \\ \hline \end{gathered}$	$\begin{aligned} & \text { E.M.U. } \\ & 4.6 . \mathrm{HO}^{3} \end{aligned}$	Mackenzie, P.M., 'о	$\begin{aligned} & \mathrm{RaA} \\ & \mathrm{AcB} \end{aligned}$	$\begin{aligned} & \mathrm{cm} \cdot / \mathrm{sec} . \\ & \mathrm{i} \cdot 22 \cdot 10^{9} \\ & \mathrm{I} \cdot \mathrm{O} \end{aligned}$	$\left.\begin{array}{c} \text { E.M.U. } \\ 5^{6} \cdot \mathrm{IO}^{3} \\ 47, \end{array}\right\}$	Rutherford, P.M., 'о6
rol	141.10^{9}	$4 \cdot 8$ "	Huff (cord)	ThC.	1.98"	$5 \cdot 6$	Rutherford
RaC.	1.57	5*\%	Rutherford, P.M , '06				$\begin{aligned} & \text { \& Hahn, } \\ & P . M ., ~ ' o 6 ~ \end{aligned}$

STOPPING POWERS OF MATERIALS

If a layer of air of density ρ and thickness t decreases the range of an α particle by the same amount as aluminium foil of density p_{a} and thickness t_{a}, then the atomic stopping power, S , of Al relative to air is given by $\left.\mathrm{S}=27 \mathrm{t}_{\mathrm{p}} / 144^{\circ} 4 t_{u p} \mathrm{p}_{\mathrm{i}}\right)$ $=$ (number of atoms per $\mathrm{cm} .^{2}$ in air layer)/(number of atoms per cm^{2} in Al foil) (Bragg and Kleeman, Phil. Mag., 1905 ; Bragg, Phil. Mag, 1906).

Metal.	S.	Metal.	s.	Metal.	S.	Gas.	S.	Gas.	S.
(Air at 20°	1.00	Ag	$3 \cdot 17$	Ni .	2.46	O_{2}.	$1{ }^{\circ} \mathrm{O} 55$	$\mathrm{C}_{2} \mathrm{H}_{2}$	I'11
C., 76 cm .)		Sn	3.37	Au .	4.45	$\mathrm{N}_{2} \mathrm{O}$	1.46	Ethylene	$1 \cdot 35$
A1 : . .	1.45	P t	$4 \cdot 16$	1 ${ }^{\text {d }}$	$4 \cdot 27$	CO_{2}.	$1 \cdot 47$	Benzene	3.37
Cu	2.43	Fe	$2 \cdot 26$	H_{2}.	2.43	CS_{2}.	$2 \cdot 18$	Methanc	0.86

[^19]
NUMBER OF IONS MADE BY AN a PARTICLE

Total number of ions produced by the complete absorption of an a particle with various initial velocities. Observer assumed $e=4.65 \times 10^{-10}$ E.S.U. (Geiger, Proc. lioy. Soc., 1909).

	R2	RaEm.	RaA	RaC	RaF
Range in air at $20^{\circ} \mathrm{C}$., 76 cm .	3.5 cm .	433	4.83	$7 \cdot 06$	$3 \cdot 86$
Number of ions	1.53×10^{3}	174×10^{5}	1.87×10^{5}	2.37×10^{3}	1.62×10^{3}

IONS PRODUCED AT DIFFERENT VELOCITIES BY AN a PARTICLE
Number of ions made per mm , of path in air by an a particle from RaC at various distances from its source. Total number $=2.37 \times 10^{55}$ (Geiger, see above).

Distance from RaC in cm .	1	2	3	4	5	6	$6 \cdot 5$	7
Ions per mm. of path in air at $12^{\circ} \mathrm{C}$. and 76 cm .	2250	2300	2400	2800	3600	5500	7600	4000

TOTAL RELATIVE IONIZATION IN GASES BY a RAYS
$\mathrm{I}_{t}=$ total ionization (relative to air) produced by the complete absorption of a particles in various gases. (B. Bragg, P.M., 1907, used RaC a rays; B. and C., Bragg and Cook, P.M, 1907 ; L., Laby, P.R.S., 1907, used U a rays; R., Rutherford, P.M., 1899, used U a rays.)

Gas.	1	Gas.	I_{6}	Gas.	I_{6}
Air	1.00	Methane	1 $1 \cdot 16$, B. and C.		(1.31, B.;
O_{2}.	1.09, B. ; rob, R.	Acetylene	- $1 \cdot 26, \mathrm{~B} ; 1 \cdot 27$, L.	Et. ether .	$\left\{\begin{array}{l}\text { 1/29, L. }\end{array}\right.$
N_{2}.	$0 \cdot 06, \mathrm{~B}$.	Ethylene .	- $\cdot 28, \mathrm{~B}$.	Et. iodide	$1 \cdot 28, \mathrm{~B} .$
$\mathrm{N}_{2} \mathrm{O}$ NH H2	1.05, B. ; 0.99, L. 101, R. $0.90, \mathrm{~L}$	Pentane	r-35, B.; r-345, L.	Acetaldehyde	ros, L.
CO_{2}.	1.08, B. ; 1'03, L.	Me. alcohol Me. iodide	$1 \cdot 22, B$. $\cdot 133, \mathrm{~B}$	Chloroform Carb. tetra-	$1 \cdot 29$, B.
Carbon bisulphide		Et. alcohol Et. chloride	. $\mathrm{r} 23, \mathrm{~B}$.	chloride	131, B.

RELATIVE VOLUME IONIZATIONS FOR β, γ, AND \times RAYS

Relative ionization $=\mathrm{I}_{r}=i \mathrm{P} / \mathrm{I} p$, where i is the amount of ionization per unit volume for the gas at-a press. p, and I that for air at press. P, the other experimental conditions being the same. In the experiments with γ rays (column headed γ), β rays would also be present. Observers: for β and γ rays, Kleeman, P.R.S:, 1907 ; X rays, C., Crowther, P.C.P.S., 1909 ; P.R.S., 1909 ; Mc., McClung, P.M., 1904. Ir for secondary γ rays is much the same as for X rays (see Kleeman, P.R.S., 190y).

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Gas. \& β \& γ \& Hard X. \& Soft X. \& Gas. \& β \& γ \& Hard X. \& Soft X.

\hline Air. \& 1.00 \& 1.001 \& 100 \& 1.00 \& Me. alcohol \& 1.69 \& 1×75 \& \&

\hline H_{2} \& -1 16 \& 0.160 \& - 18 , C. \& 001, C . \& Me. bromide \& 373 \& 3.81 \& \& 71, C.

\hline O_{2} \& 1.17 \& $1 \cdot 16$ \& 1-17, Mc. \& $13, \mathrm{Mc}$. \& Me. iodide \& $5 \cdot 11$ \& $5 \cdot 37$ \& 125, C. \& 145, C.

\hline NH_{3} \& o.89 \& $0 \cdot 0$ \& - \& \& Chloroform \& 4.94 \& 4.93 \& \&

\hline $\mathrm{N}_{2} \mathrm{O}$ \& 1.55 \& $1 \cdot 55$ \& $1 \cdot 19$, \& \& CCl_{4} - ${ }^{\text {a }}$ \& \& 6.33 \& 71, C. \& $67, \mathrm{C}$.

\hline $\mathrm{CO}_{2}{ }^{\text {c }}$ \& \& $1 \cdot 58$ \& $1 \cdot 49, \mathrm{C}$ \& 1-57, C. \& Et. aldehyde \& $2 \cdot 12$ \& $2 \cdot 17$ \& \&

\hline $\mathrm{C}_{2} \mathrm{~N}_{2}$
SO

, \& I.86 \& 171 \& \& \& Et. bromide \& $4 \cdot 41$ \& $4 \cdot 63$ \& \& $72, \mathrm{C}$.

\hline ${ }_{\text {SO2, }} \mathrm{CS}_{2}$. \& 225 \& | 2.27 |
| :--- |
| 3.66 | \& 4.79, Mc. \& 11'0, Mc. \& Et. chloride

Et. ether \& 3.24
4.39 \& $3 \cdot 19$
4.29 \& $17.3, \mathrm{C}$. \& 18, C.

\hline Pentane \& +55 \& +53 \& - \& \& Et. iodicle \& $5 \cdot 90$ \& +69 \& \&

\hline Berzene \& 3.95 \& 3.94 \& - \& - \& Ni. carbonyl. \& \& $5 \cdot 98$ \& $97, \mathrm{c}$. \& So, c.

\hline Me. acetate \& \& - \& $3 \cdot 90, \mathrm{C}$ \& $495, \mathrm{C}$. \& Hg dimethyl- \& \& \& \& +25, C.

\hline
\end{tabular}

RELATIVE IONIZATION PER UNIT VOLUME BY α RAYS

Relative ionization $=$ (total ionization) \times (stopping power), Metcalfe, P.M., 1909.

Air	1.00	He	211	CO	${ }^{1} 00$	HCl	1.4	Propane	3.05	Pentane	483
H_{2}	233	Br_{2}	3.9	NO.	1.28	Ethane	2.08	Butane .	402		

For calculated total ionization when Röntgen rays are completely absorbed in various gases, see Crowther, Proc. Roy. Soc., 1909.

HEATING EFFECT OF RADIUM

In calories per sec, per gm. of metallic radium with its radioactive products. E. von Schweidler and Hess, using 795 gm . Ra enclosed in 1 mm . glass +5 mm . Cu , obtained 0328 calorie gm^{-1} sec. ${ }^{-1}=118$ cals. $\mathrm{gm}^{-1} \mathrm{hr} .^{-1}$ The heating effect of a radioactive substance is proportional to the ionization it produces (Duane, Le Radium, 1909). The heat emission continues at temp. of liquid hydrogen (Curie and Dewar, 1903), and is mainly due to the kinetic energy of the a rays (Rutherford, "Radioactivity").

Temp. and press. have no effect on heat emission (Schuster, Eve, and Adams, Nature, 1907; Rutherford and Petavel, B.A. Rep., 1907 ; Schmidt, P.Z., 1908).

Heat.	4 Observer. - :	Heat.	Observer.
$\begin{array}{r} 0278 \\ .0292 \end{array}$	Curie and Laborde, C.R., 1903 Runge and Precht., Berl. Ber., 1903	$\begin{aligned} & 25 \% \\ & 44 \% \\ & 31 \% \\ & .0325 \end{aligned}$	$\left.\begin{array}{ccc} \text { Produced by } \mathrm{Ra} \\ " & , & \mathrm{Em}+\mathrm{RaB} \\ " & ., & \mathrm{RaC} \end{array} \right\rvert\, \begin{aligned} & \mathrm{R} . \& \mathrm{~B} . \\ & P . M ., \\ & 1904 \end{aligned}$ Angström, P.Z., 1905
.0306	Rutherford and Barnes, Nature, 1903 ; P.M., 1904	.0372	Precht, A.d.P., 1906 Schweidler and Hess, Wien. Ber., 1908

HEAT EMISSION FROM RaEm, AND THORIUM
The 6×10^{-4} c.c, of RaEm (with its products) in equilibrium with 1 gm . Ra emit 75 of the 0328 calories emitted per sec. by the radium. Thus the total quantity of heat given out by i c.c. of RaEm during its whole life $=$ $75 \times: 0328 /\left(\lambda \times 6 \times 10^{-4}\right)=19 \times 10^{7}$ calories.

For old (mineral) thorium metal, the heat emitted is 5×10^{-9} calories per sec. per gm. (Pegram and Webb, Phy. Rev., 1908).

RADIUM EMANATION

Γ is the period of decay (in days) to half initial activity. Taking $\mathbf{r}=3.66$ days, then the decay coefficient $\lambda=2^{1} 19 \times 10^{-6} \mathrm{sec} .^{-1}($ see p. 107).

Γ in days.	Observer, etc.	\boldsymbol{r} in days.	Observer, etc:
$3 \cdot 77$	Rutherford and Soddy, P.M., 1903.	$\begin{aligned} & 3.75 \\ & 3.58 \end{aligned}$	Rümelin, ${ }^{\prime}$.M., r 907. For first 5 days.
$3 \cdot 88$	Bumstead and Wheeler, A.7.S., 1904.	$\begin{aligned} & 3.75 \\ & 3.85 \end{aligned}$	$\left\{\begin{array}{l}\text { During period } 5 \text { to } 20 \text { days. } \\ 20 \text { to } 40 \text { days' old emanation. }\end{array}\right.$
$\begin{aligned} & 3 \cdot 8 \text { to } 4 \cdot 1 \\ & 3.86 \end{aligned}$	Debierne, C.R., 1909. Sackur, Ber. C.G., 1905.	4.4	One sample Rutherford and Tuomikoski, P.M., 1909.

EQUILIBRIUM VOLUME OF RADIUM EMANATION
Final volume of radium emanation at $0^{\circ} \mathrm{C}$. and $76 \mathrm{~cm} . \mathrm{Hg}$ in equilibrium with 1 gm . of metallic radium. Theoretical volume $=$ (number of radium atoms breaking up per sec. $) / \lambda \mathrm{N}=3.4 \times 10^{10} /\left(2.75 \times 10^{19} \times 2.19 \times 10^{-6}\right)=5.64$ $\times 10^{-4}$ c.c. (Rutherford, "Radioactivity"). The volume of the emanation changes anomalously after it is first formed.

Observed vol.	Observer.	Observed vol.	Observer.
$\begin{aligned} & .58 \text { cub. mm. } \\ & .601 \quad \# \end{aligned}$	Rutherford, P.M., 1908. Gray \& Ramsay, f.C.S., 1909.	-58 cub. mm.	Debierne, C.R., 1909.

VAPOUR PRESSURE OF RADIUM EMANATION

Vapour pressure of liquid RaEm. in $\mathrm{cm} . \mathrm{Hg}$; melting-point, $-7 \mathrm{I}^{\circ} \mathrm{C}$. (R., Rutherford, Nature, February, 1909 ; G. \& R., Gray and Ramsay, F.C.S., June, 1909.),

Temp. ${ }^{\circ} \mathrm{C}$.	R.	-127°	-101°	-78°	$-65^{\circ}=\mathrm{B} . \mathrm{P}$.
Vap. press. cm. Hg		9	5	25	76

Temp. ${ }^{\circ} \mathrm{C}$.	. 4	$62^{\circ}=$ B.P.	$-60^{\circ} 6$	$-55^{\circ} \cdot 8$	$-38^{\circ} \cdot 5$	$-17^{\circ} 7$	$-10^{\circ} 2$	$+104^{\circ} 5$ crit.t.
$\left.\begin{array}{c} \text { Vap. press. } \\ \mathrm{cm} . \mathrm{Bg} \end{array}\right\} \begin{aligned} & \& \& \\ & R . \end{aligned}$	50	76	80	100	200	400	500	4745 crit. press.

DIFFUSION OF EMANATIONS

$D=$ coefficient of diffusion (in $\mathrm{cm} .^{2} \mathrm{sec} .^{-1}$) of the emanation into the gas stated at the pressure $p \mathrm{~cm} . \mathrm{Hg}$ and temp. $t^{\circ} \mathrm{C}$. indicated. According to J. J. Thomson (Nature, November 25, 1909): "D would only vary slowly with atomic weight," and not as the square root of the molecular weight of the emanation, as is assumed in the table below.

Russ finds $p \mathrm{D}=$ const. for AcEm. and for ThEm. Bruhat gives $p \mathrm{D} / \mathrm{T}^{2}$ $=$ const. for AcEm. between 0° and 20°. (Molec. wgt. ThEm.)/(molec. wgt. AcEm.) $=142$ (Russ). Mol. wgt. of RaEm, $=222$ (Gray \& Ramsay, 1910).

B., Bruhat, Le Radium, 1909 ; B. \& W., Bumstead \& Wheeler, A.7.S., 1903; C., Chaumont, Le Radium, 1909 ; C. \& D., Curie \& Danne, C.R., 1903 ; D., Debierne, Le Radium, 1907 ; M., Makower, P.M., 1905; P., Perkins, A. $7 . S$. ; R., Russ, P.M., 1909, Le Radium, 1909; Ruth., Rutherford, "Radioactivity"; R. \& B., Rutherford \& Miss Brooks, C.N., 1902.
A.F.S., Amer. Fourn. Sci.; C.N., Chem. News ; C.R., Compt. Rend.; 7.C.S., Fourn. Chem. Soc. ; P.M., Phil. Mag.

Ra IN ROCKS

EQUILIBRIUM ACTIVITIES IN MINERALS

Relative activity of radioactive products in minerals. Boltwood (A.F.S., April, 1908) found U 2.22 times as active as the Ra alone in minerals (see McCoy and Ross, A.7.S.).

Product.	U	Io	Ra	RaEm.	Ras	RaB	RaC	RaF	Ac	Total.
Relative activity.	1	$\cdot 34$	$\cdot 45$	62	54	04?	91	46	$\cdot 28$	$4 \cdot 64$

$3.4 \times 10^{-7} \mathrm{gm}$. Ra is in equilibrium with I gm. U (Rutherford and Boltwood, A.F.S., 1906). 7.3×10^{6} gms. U equal in activity 1 gm . of $\mathrm{Ra}+$ its products to RaC . i.e. Ra just over 30 days old (corrected by Boltwood, A.7.S., 1908).

RADIUM AND THORIUM IN ROCKS

Rutherford and Soddy (P.M., May, 1903) and W. E. Wilson (Nature, July, 1903) suggested that the heat liberated by radioactive changes is one of the sources of the Earth's heat. Thus the distribution of radium and thorium in the Earth's crust is of geophysical importance. Loss of heat from the Earth's surface $=$ temperature gradient \times thermal conductivity of crust \times area of Earth's surface $=(1 / 3200)$ $\times 004 \times 5.1 \times 10^{18}=6 \times 10^{12}$ calories per sec. Now, clementary radium in radioactive equilibrium (i.e. whole U family) gives out $6 \times 10^{-3} \mathrm{cal} . / \mathrm{sec} . \mathrm{gm}$. (Rutherford \S), and therefore $I^{1} 1 \times 10^{14} \mathrm{grms}$. of radium, or $10^{14} / \mathrm{IO}^{27}=10^{-13} \mathrm{gm}$. per c.c., throughout the Earth's volume would maintain it at a steady temperature. Thorium contributes $5 \times 10^{-9} \mathrm{cal}$. $/ \mathrm{sec} . \mathrm{gm}$. The total heating effect in calories per gram of rock per hour is for the lava indicated below by *, 30×10^{-10}; and for the rock indicated by $\dagger, 2.9 \times 10^{-10}$; for average igneous rock, 11×10^{-10}.
(See Strutt, Proc. Roy. Soc., I G06-7; Joly, "Radioactivity and Geology," 1909.)

Extent :- ${ }^{1} 50,{ }^{2} 2 \cdot 5,{ }^{3} 51$ million square miles. $\dagger 1000$ feet below the surface. § Assuming that the heat due to each member of the family is proportional to the ionization it produces. || Preliminary result. B., Blanc., P.M.; F.M., Eve and McIntosh, P.M.; F.F., Farr and Florance, P.M.; Fl., Fletcher; J., Joly, P.MI.; S., Strutt (above). A. F.S., Amer. Fou;n. Sci.; P.M., Phil. Mag.

ELECTRIC ARC

RADIUM IN SEA-WATER

In grams per gram of sea-water. Deduced from the observed amount of Ra Em.

Amount.	Place.	Observer.	Amount.	Place.	Observer.
2.3×10^{-15}		Strutt, P.R.S., '06	4×10^{-15}	Nile	Joly, P.M., 1908
$3^{-3} 6$ "	Mid. N. Atlantic	Eve, P.M., 1907	14 "	Mediterranean	" " 1909
$\because 9$	Atlantic	J"ly P" 1909	5 "	Indian Ocean	" "

RADIUM EMANATION IN ATMOSPHERE
RaEm. per cubic metre of air, expressed in terms of the number of grams of radium with which it would be in equilibrium. The observers below absorbed the emanation by charcoal.

RaEm.	Place.	Observer.	RaEm.	Place.	Observer.
$\begin{aligned} & 24-27 \times 10^{-12} \\ & 60 \\ & 86-200 \quad " \end{aligned}$	Montreal Chicago	$\begin{array}{\|c} \hline \text { Eve, P.M., } 1907 \\ \text { Ashman, } A . F^{1908} .{ }^{\prime}, \mathrm{ob} \end{array}$	$\begin{array}{\|l} 35-350 \times 10^{-12} \\ \text { Mean } 105 \end{array}$	$\left\{\begin{array}{l} \text { Cam- } \end{array}\right.$	Satterly, P.M., 1908 and 1910

MOBILITIES OF NATURAL IONS IN AIR

Mobility or speed K is in $\mathrm{cm} .^{2}$ sec..$^{-1}$ volt ${ }^{-1}$ at room temperature and $76 . \mathrm{cm}$. (see p. 95). The ions are named from their velocities: the small ions are assumed to have the velocity of X-ray ions. (See Pollock, Science, 1909 ; Eve, Phil. Mag., 19, 1910; Lusby, Proc. Camb. Phil. Soc., 1910.)

Ion.	Mean \mathbf{X}.	Observer.	Ion	Mean \mathbf{X}.	Observer.
Small .	$\left\{\begin{array}{l} \mathrm{K}+=\mathrm{I} \cdot 4 \\ \mathrm{~K}-=17 \end{array}\right\}$	Langevin, '03	Large Large	${ }^{00003}{ }^{*}$	Langevin, C.R.,'o5 Pollock, 1908
Intermediate	c. ${ }^{\circ} \mathrm{OI}$	Mean	Large	$\cdot 0008$ +	Polock,

* Humidity, 19 grms. $\mathrm{H}_{2} \mathrm{O}$ per cubic metre. +5 grm. $\mathrm{H}_{2} \mathrm{O}$ per cubic metre of air. Pollock, Austl. Ass. Adv. Sci., 1908.

ELECTRIC ARCS

Mrs. Ayrton's formula for carbon arcs, $\mathrm{E}=\alpha+\beta l+\frac{\gamma+\delta l}{i}$, has been shown by Guye and Zébrikoff (Compt. Rend., 1907) to hold for short stable arcs between metals. E is the voltage across the arc, i is the current in amperes, and l the length in mms. of the arc in air at atmospheric pressure. Mrs. Ayrton's formula does not hold for very long arcs, nor for cored carbons. For stability, an arc requires an external resistance R which must be less than $\frac{\left\{E_{x}-(\alpha+\beta l)\right\}^{3}}{4(\gamma+\delta l)}$ ohms, where E_{x} is the total available voltage ; or E_{x} must exceed $a+\beta l+2 \sqrt{\mathrm{R}(\gamma+\delta l)}$. If R is too small the arc hisses, in which case the current is independent of the voltage across the terminals. The constants for carbon refer only to the particular șizes and quality used by Mrs. Ayrton.
(See J. J. Thomson, "Conduction of Electricity through Gases.")

Metal.	a	β	γ	δ.	Metal.	a	β	γ	δ
C.	38.88	20074	1166	10.54	Pd.	21.64	$3 \cdot 70$	0	21.78
Fe	1573	2.52	944	15.02	Ag.	1419	3.64	11.36	$19^{\circ} \mathrm{O}$
Ni	17'14	$3 \cdot 89$	0	17.48	Pt.	24.29	$4 \cdot 80$	0	20:23
Co	20\%71	2.05 3.03	2.07 10.69	$10 \cdot 12$ $15 \cdot 24$	Au.	20.82	4.62	12.17	20.97
Cu	21.38	$3 \cdot 03$	10.69	$15 \cdot 24$					

A.7.S., Amer. Fourn. Sci. ; C.R., Compt. Rend. ; P.M., Mhit. Mag.; R.R.S., Proc. Roy. Soi.

ATOMIC AND RADIOACTIVITY CONSTANTS

References: J. J. Thomson's "Conduction of Electricity through Gases," Rutherford's "Radioactivity," H. A. Lorentz, Eclairage Electrique, 44, 1905, "Theory of Electrons," 1909, Jeans' "Dynamical Theory of Gases," and Millikan, P.M., 1917.

Heat given out by 1 gm . of metallic radium with its products
Number of a particles emitted by I gm. radium without products
Initial velocity of a particle from RaC
Initial energy of a particle from $\mathrm{RaC}=m v^{2} / 2=v^{2} e$ $/\left(2 e / m_{\alpha}\right)=2.06^{2} \cdot 10^{18} \times 1.57 \cdot 10^{-20} /\left(2 \times 507 \cdot 10^{3}\right)$
Total number of ions produced in air by an a ray (RaC)
Volume of helium at 0° and 76 cm . produced by 1 gm. radium
Calculated volume $=4 \times$ number of a rays emitted $/ \mathrm{N}$ $=4 \cdot 3 \cdot 4 \cdot 10^{-9} / 2 \cdot 75$
Number of β particles emitted per sec. by the RaC in equilibrium with 1 gm . Ra (Makower, Phil, Mag., 1909)

CONSTANTS OF RADIOACTIVE SUBSTANCES

Atomic weights: $\mathrm{O}=16, \mathrm{U}=238^{\circ} 2, \mathrm{Ra}=226{ }^{\circ} 0, \mathrm{Th}=232^{\circ} 4^{\circ}$.
Rate of decay; If I is the radioactivity of a substance at a time t, then $\mathrm{I}=\mathrm{I}_{0} e^{-\lambda t}$, where I_{0} is the initial activity when $t=0$. λ is given below in sec. ${ }^{-1}$. If Γ is the period in which the activity decreases to half its initial value (i.e. $1 / I_{0}=\frac{1}{2}$), then $\lambda=69315 / \mathrm{r}$ sec. ${ }^{-1} . \quad \mathrm{r}$ is given below in secs. (s.), mins. (m.), hrs. (h.), days (d.), or years (y.).

Coefficients of absorption Λ are given in $\mathrm{cm} .^{-1}$ for β rays in Al foil and for γ rays in lead foil. If J_{0} is the intensity of the rays incident un foil of thickness $d \mathrm{~cm}$., and J is the intensity of the emergent rays, then $\mathrm{J}=\mathrm{J}_{0} e-d \Lambda$.
(See Rutherford's "Radioactive Substances," Camb. Univ. Press, and Wendt. Phy. Rev., 1916, for a complete table.)

PROPERTIES OF RADIOACTIVE SUBSTANCES

Subotance.	Properties.	Substance.	Properties.
Rad.U	Sol. in excess of am. carb. Nitrate soluble in ether and acetone. Carried down by BaSO_{4} and ferric hydrate. Soluble in HCl .		Carried down by PbCO_{z} and by SnCl_{2} with Hg and Te. RaD, $\mathrm{E}_{1}, \mathrm{E}_{2}$, and F can be separated by electro lysis.
ס. x	Less volatile than U. Volatile in electric arc. Insoluble in excess of am. carb. Soluble down by barium	Ac	Produces helium. Precipitated by oxalic acid in acid solutions. Oxalate insoluble in HF ; accompanies
	by moist ferric hydrate, and by animal charcoal.	Rad.Ac	Slightly volatile at high temps. Insoluble in $\mathrm{NH}_{4} \mathrm{OH}$.
	Soluble in excess of am. oxalate. Carried down by $\mathrm{H}_{2} \mathrm{O}_{2}$ in presence of U salts.		trolysis, by fractional precipitation, by ammonia, and by animal charcoal.
Ra.	Characteristic spectrum. Spontaneously luminous. Analogous to Ba . RaCl_{2} and	Acx	Deposited by electrolysis in alkaline solution. Not precipitated by $\mathrm{NH}_{4} \mathrm{OH}$.
	RaBr_{2} are less soluble than BaCl_{2} and BaBr_{2}.	AcEm.	Behaves as inert gas. Coef. of diffusion in air 0.1I.
E.aEm.	One of group of inert gases. Characteristic spectrum. Coef. of diffusion in air $=$ $0^{\circ} \mathrm{I}$ (see p. 103). Mol. wt. $=218$.	Aca	Condenses at $-120^{\circ} \mathrm{C}$. Volatile below $400^{\circ} \mathrm{C}$ Soluble in $\mathrm{NH}_{4} \mathrm{OH}$ and strong acids.
RaA Rab	Behaves as a solid. Deposited on cathode in an electric field. Volatile at $800-900^{\circ} \mathrm{C}$. Soluble in strons acids.	ACB	Volatile below $700^{\circ} \mathrm{C}$. Soluble in $\mathrm{NH}_{4} \mathrm{OH}$ and strong acids. Deposited by electrolysis of active denosit on
Rab	Like RaA. Volatile at $600-$ $700^{\circ} \mathrm{C}$. Precipitated by		lusis of active deposit on the cathode in HCl.
Rad	BaSO4. Physically like RaA. Vola. tile at $800-1300^{\circ} \mathrm{C}$. Chemically, like RaB. Deposited on Cu and Ni . Carried	Th	Volatile in electric arc. Colourless salts not spontaneously phosphorescent. Salts pptd. by $\mathrm{NH}_{4} \mathrm{OH}$ and oxalic acid.
	down with precipitated copper. Perhaps a mixture of 2 or 3 products.	Rad.Th	Carried down by hydrates, precipitated by $\mathrm{NH}_{4} \mathrm{OH}$.
Rad	Volatile below $1000^{\circ} \mathrm{C}$. Soluble in strong acids. Reactions analogous to those of Pb .	ThX	Soluble in $\mathrm{NH}_{4} \mathrm{OH}$. Carried down by iron. Deposited by electrolysis in alkaline soln.
RaE ${ }_{1}$	Volatile at red heat. Soluble in cold acetic acid. Reactions analogous to those of Pb.	ThEm.	Inert gas. Condenses just above $-120^{\circ} \mathrm{C}$. Coefficient of diffusion in air $=\cdot 10$.
RaE ${ }_{2}$.	Not volatile at red heat. Reactions analogous to those of bismuth.	Tha	Volatile under $630^{\circ} \mathrm{C}$. Soluble in strong acids. Volatile below $730^{\circ} \mathrm{C}$ Like
$\boldsymbol{R a F} \mathbf{F}$ POII)	Volatile towards $1000^{\circ} \mathrm{C}$. Deposited from its solutions on $\mathrm{Bi}, \mathrm{Cu}, \mathrm{Sb}, \mathrm{Ag}, \mathrm{Pt}$.	ThC	ThA. Deposited on Ni. Separated from Tha by electrolysis. Like ThB.

PHYSICAL CONSTANTS OF CHEMICAL COMPOUNDS

For properties of the elements, see : density, p. 20; melting and boiling points, p. 48 ; solubility in water, p. 124. Metallo-organic compounds are given under "Organic Compounds," p. 118.

Formulæ.-Hydrated forms (which are often crystalline) are indicated thus: $\mathrm{CaI}_{2}\left(\right.$ and $\left.+6 \mathrm{H}_{2} \mathrm{O}\right)$; the properties given are for the anhydrous substance.

Formula (Molecular) Weights are calculated with atomic weights for 1911 (p.1).
Densities.-When no temp is given, grams. per c.c. at 15° may be assumed. When preceded by "A" the density is relative to that of air ("OoI293 gram per c.c. at 0° and 760 mms .). To convert this into a density relative to $0=16$, multiply by 14.47. For those gaseous densities known with accuracy, see p. 26. Other densities on pp. 20-26.

Melting and Boiling Points are for anhydrous substances at 760 mms . mercury unless some other conditions are specified. $T=$ temp. of transition or pseudo"melting" point of hydrated substance. For fats and waxes, see p. 50.

Solubilities are given as grams of substance in 100 grams of water at the temp. stated. " p " indicates grams per 100 grams of solution. "V" means volumes of substance at 0° and 760 mms . per 100 volumes of water at the temp. stated. "Soluble" infers solubility in either hot or cold water; "insoluble" indicates solubility in neither. (See also pp. 124, 125.)

For more complete tables, see Van Nostrand's "Chemical Annual" and Biedermann's "Chemiker-Kalender" for current year; Dammer's "Handbuch der Anorganischen Chemie;" Beilstein's "Handbuch der Organischen Chemie;" Watts' "Dictionary of Chemistry;" and F. W. Clarke's "Specific Gravities."

INORGANIC COMPOUNDS

Formula, formula (molecular) weight, density, melting and boiling points, and solubility in water.

Substance and Formula.	$\begin{aligned} & \text { Formula } \\ & \text { weight } \end{aligned}$ $(0=16) \text {. }$	Density, gms./e.c.	Melting Point, C.	Boiling Point, C.	Solubility in Water.
Aluminium - bromide, $\mathrm{Al}_{2} \mathrm{Br}_{6}\left(\right.$ and $\left.+12 \mathrm{H}_{2} \mathrm{O}\right)$ chloride, $\mathrm{Al}_{2} \mathrm{Cl}_{6}\left(\right.$ and $\left.+12 \mathrm{H}_{2} \mathrm{O}\right)$ iodide, $\mathrm{Al}_{2} \mathrm{I}_{6}$ (and $+12 \mathrm{H}_{2} \mathrm{O}$) nitrate, $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ oxide, $\mathrm{Al}_{2} \mathrm{O}_{3}$ phosphate, $\mathrm{All}^{\circ} \mathrm{O}_{4}$ sulphate, $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 18 \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 533^{\circ} 7 \\ & 267^{\circ} \\ & 8157 \end{aligned}$	$\begin{gathered} \left.\begin{array}{c} \text { at. } / \text { temp. } \\ 2.54 ; \\ \text { A. } 18 \cdot 62 \end{array}\right\} \\ \text { A. } 9.34 / 400^{\circ} \\ \left\{\begin{array}{c} \circ \cdot 6 ; \\ \text { A. } 27 \end{array}\right\} \end{gathered}$	$\begin{gathered} \text { 2t. } / \mathrm{mms} . \\ 93^{\circ} \\ 190^{\circ} / 1910 \end{gathered}$	$\begin{gathered} \text { at./nms. } \\ 263^{\circ} / 747 \end{gathered}$	at./temp. soluble
				$182^{\circ} / 75^{2}$	$41 / 15^{\circ}(p)$
			185°	360	soluble
	$\begin{aligned} & 375 \cdot 3 \\ & 102 \cdot 2 \\ & 122 \cdot 1 \\ & 666 \cdot 7 \end{aligned}$	$\begin{aligned} & 3.7-4 \\ & 2.59 \\ & 1.62 \end{aligned}$	$\begin{aligned} & \mathbf{T}=73^{\circ} \\ & 2200 \\ & \text { infusible } \\ & \text { decomp. } \end{aligned}$	dec. 134°	v. soluble insoluble insoluble $36 / 20^{\circ}$
Potassium alum, $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \mathrm{~K}_{2} \mathrm{SO}_{4} \cdot 24 \mathrm{H}_{2} \mathrm{O}$	9491	1.7	$8+.0$	$\left\{\begin{array}{l}23 \mathrm{H}_{2} \mathrm{O} \\ \text { at } 190^{\circ}\end{array}\right.$	$\begin{aligned} & 9.6 / 15^{\circ} \\ & 357 / 100^{\circ} \end{aligned}$
Ammonimm- ammonia, NH_{3} acetate, $\mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ arsenate, $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{\Lambda sO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$.	17.03	$\left\{\begin{array}{c}\text { lic. }) \cdot 623 / 0^{\circ} \\ \text { A. } \cdot 5896\end{array}\right\}$	-75	-335	$\text { scep. } 124 .$
	$\begin{array}{r} 77^{\circ} 07 \\ 247^{\circ} \mathrm{I} \end{array}$		89	-	$148 / 4^{\circ}$ soluble
bromide, $\mathrm{NH}_{4} \mathrm{Br}$.	96	$\left\{\begin{array}{c} 2 \cdot 33 / 15^{\circ} \\ \Lambda .1 \cdot 64 / 440^{\circ} \end{array}\right\}$	diss.		$\left\{\begin{array}{l} 66 / 10^{\circ} \\ 128 / 100^{\circ} \end{array}\right.$
$\text { carbonate, }\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}$	114.1	$\left(\Lambda .1^{\circ} 64 / 440^{\circ}\right)$	$\operatorname{diss} .85^{\circ}$	-	$\begin{aligned} & 128 / 1005^{\circ} \\ & 100 / 10^{\circ} \end{aligned}$
chloride, $\mathrm{NH}_{4} \mathrm{Cl}$.	53.50		diss. 35°		$\left\{\begin{array}{l}35 / 15^{\circ} \\ \text { sce p.125 }\end{array}\right.$
chloroplatinate, (N chromate, $\left(\mathrm{NH}^{2}\right)$	444° 152°	$\begin{aligned} & 1.06 \\ & 1.88 / 11^{\circ} \end{aligned}$			$67 / 20^{\circ}$ decomp.
chromate, $\left(\mathrm{NH}_{4}\right)$ iodide, $\mathrm{NH}_{4} \mathrm{I}$.	152° 145 	$\begin{aligned} & 1.88 / 11^{\circ} \\ & 2.5 \end{aligned}$	decomp. sublimes		decomp. v. soluble
molyblate, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{M} \cup \mathrm{O}_{4}$	196.1		decomp.		decomp.
nitrate, $\mathrm{NH}_{4} \mathrm{NO}_{3}$	$80 \cdot 05$	$1 \cdot 72 / 1$		dec. 21	

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{\begin{tabular}{l}
INORGANIC COMPOUNDS (contd.) \\
For general heading, see p. Iog.
\end{tabular}} \\
\hline Substance and Formula. \& \[
\begin{aligned}
\& \text { Formula a } \\
\& \text { (weight } \\
\& (0=16) .
\end{aligned}
\] \& \begin{tabular}{l}
Density, \\
gms./c.c.
\end{tabular} \& Melting
Point; \(\stackrel{0}{0}\). \& Boiling Point, \({ }^{\circ} \mathrm{C}\). \& Solubility
in Water in Water. \\
\hline \multirow[t]{2}{*}{Ammonium (contd.) nitrite, \(\mathrm{NH}_{4} \mathrm{NO}_{2}\). oxalate, \(\left(\mathrm{NH}_{4}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot \dot{\mathrm{H}}_{2} \dot{\mathrm{O}}\) persulphate, \(\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}\) phosphomolybdate, \(\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4} \cdot 12 \mathrm{MoO}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}\) sulphate, \(\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\) sulphocyanate, \(\mathrm{NH}_{4} \mathrm{CNS}\)} \& \[
\begin{aligned}
\& 644^{\circ} 5 \\
\& 14)^{\circ} \cdot \\
\& 228^{\circ} \cdot 2
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { at. temp. } \\
\& 177 \\
\& 1.5
\end{aligned}
\] \& at. \(/ \mathrm{mms}\). decomp. decomp. \& at./mms. \& \begin{tabular}{l}
at./temp \\
soluble \\
4/150 \\
58/0
\end{tabular} \\
\hline \& \[
\left\lvert\, \begin{gathered}
1931 \\
132 \cdot 2 \\
132^{2} \cdot 12
\end{gathered}\right.
\] \& \[
\begin{aligned}
\& 177 / 20^{\circ} \\
\& 131 / 13^{\circ}
\end{aligned}
\] \& \(140^{\circ}\)
159 \& \[
\begin{aligned}
\& \text { dec. } 280^{\circ} \\
\& \text { dec. } 170^{\circ}
\end{aligned}
\] \& \[
\begin{aligned}
\& 03 / 15^{\circ} \\
\& 776 / 20^{\circ} \\
\& 162 / 20^{\circ}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
sulphocyanate, \(\mathrm{NH}_{4} \mathrm{CNS}\). \\
Antimony - \\
bromide, \(\mathrm{SbBr}_{3}\)
\end{tabular} \& \& \& \& \& \\
\hline chloride, tri-, \(\mathrm{SbCl}_{3}\). \& \(360 \cdot\)
\(226 \cdot 6\) \& \[
\begin{gathered}
4.15 / 23^{\circ} \\
\left\{\begin{array}{c}
060 / 26^{\circ} \\
A \\
A \cdot 0^{\circ}
\end{array}\right\}
\end{gathered}
\] \& \(73^{2}\) \& \(280^{\circ}\) \& decomp.
\(816 / 15^{\circ}\) \\
\hline \multirow[t]{3}{*}{hydride, \({ }^{\text {pent }}{ }_{3}\) iodide, tri-, \(\mathrm{SbI}_{3}\)} \& \& \& 73 \& 102\% \({ }^{1} 68\) \& ¢ \(/ 72^{\circ}\)
decomp. \\
\hline \& 297
123 \& A. \(4.3 / 15^{\circ}\) \& -915 \& 102/68 \& 20 V . \\
\hline \& 501 \& \(\left\{\begin{array}{l}4.85 / 26^{\circ} \\ \text { A. } 17.6\end{array}\right.\) \& \& 401 \& decomp. \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { oxide, tri-, } \mathrm{Sb}_{2} \mathrm{O}_{3} \\
\& " \quad \text { tetr-, } \mathrm{Sb}_{2} \mathrm{O}_{4} \\
\& " \quad \text { pent-, } \mathrm{Sb}_{2} \mathrm{O}_{3}
\end{aligned}
\]} \& \(288 \cdot 4\) \& \(5^{\circ} 2.5{ }^{\prime} 7\) \& red heat \& 1550 \& . \(002 / 15^{\circ}\) \\
\hline \& \begin{tabular}{l}
304.4 \\
3204 \\
\hline
\end{tabular} \& \& \[
\begin{aligned}
\& 0 / 800^{\circ} \\
\& 0 / 300^{\circ}
\end{aligned}
\] \& \(\stackrel{5}{\mathrm{O}_{2} / 800^{\circ}}\) \& insoluble
insoluble \\
\hline potassium tartrate,
\[
\mathrm{K}(\mathrm{SbO}) \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}
\] \& 332'3 \& \(2 \cdot 6\) \& \(\frac{1}{2} \mathrm{H}_{2} \mathrm{O} / 100^{\circ}\) \& decomp. \& \[
\left\{\begin{array}{l}
5 / 9^{\circ} \\
36 / 100^{\circ}
\end{array}\right.
\] \\
\hline \multirow[t]{2}{*}{sulphide, tri-, \(\mathrm{Sb}_{2} \mathrm{~S}_{3}\) penta-, \(\mathrm{Sb}_{2} \mathrm{~S}_{\mathrm{j}}\).} \& \[
\begin{aligned}
\& 336 \cdot 6 \\
\& 400^{\prime} 7
\end{aligned}
\] \& \[
\begin{aligned}
\& 4.65 \\
\& 4: 12 / 0^{\circ}
\end{aligned}
\] \& fusible fusible \& volatilizes \& insoluble insoluble \\
\hline \& \& \& \& \& \\
\hline bromide, \(\mathrm{AsBr}_{8}\). \& 3147 \& \(\left\{\begin{array}{c}3.7 / 15^{\circ} \\ \text { A. } 10.91\end{array}\right\}\) \& \(31^{\circ}\) \& \(221^{\circ}\) \& decomp. \\
\hline \multirow[t]{2}{*}{chloride, \(\mathrm{AsCl}_{3}\) fluoride, tri-, \(\mathrm{AsF}_{3}\) penta-, AsF} \& 181.3 \& 2.2/0 \({ }^{\circ}\); A. \(6 \cdot 3\) \& -18.5 \& 130.2 \& decomp. \\
\hline \& \(1820^{\circ}\)
130
1700 \& \[
27 ; \text { A. } 4 \cdot 57
\]
\[
\text { A. } 415
\] \& -8.5
-80 \& \(\begin{array}{r}13 \\ -53 \\ \hline\end{array}\) \& decomp. \\
\hline \multirow[t]{2}{*}{hydride, \({ }^{\text {penta }}{ }^{2}\) iodide, di-, \(\mathrm{AsI}_{2}\)} \& \& \begin{tabular}{l}
A. 415 \\
A. 2.7
\end{tabular} \& -80
-113 \& -53
-54.8 \& soluble
slgtly sol. \\
\hline \& 328.8 \& \& \& \& \\
\hline \multirow[t]{3}{*}{tri-, \(\mathrm{AsI}_{3}\). pent-, \(\mathrm{AsI}_{5}\) oxide, tri-, \(\mathrm{As}_{2} \mathrm{O}_{3}\) pent-, \(\mathrm{As}_{2} \mathrm{O}_{6}\)} \& 4557 \& \(4.4 / 13^{\circ}\) \& 146 \& \[
\left\{\begin{array}{l}
39+414 \\
\text { V.D. } 16 \cdot 1
\end{array}\right.
\] \& \(30 / 100^{\circ}\) \\
\hline \& 709.6 \& \& \& \& \\
\hline \& 1979
229 \& \& subl. \(218^{\circ}\) \& \[
\text { V.D. } 13 \cdot 8
\] \& \[
17 / 16^{\circ}
\] \\
\hline Barium- \({ }^{\text {pent-, } \mathrm{As}_{2} \mathrm{O}_{6} \text {. . . }}\) \& 229.9 \& 3.9 \& \& \& \\
\hline \multirow[t]{2}{*}{bromide, \(\mathrm{BaBr}_{2} .2 \mathrm{H}_{2} \mathrm{O}\)
carbonate, \(\mathrm{BaCO}_{3}\)} \& 33 \& \(3 \cdot 8\) \& anhy. \(880^{\circ}\) \& \(2 \mathrm{H}_{2} \mathrm{O} / 100^{\circ}\) \& 103/15 \(5^{\circ}\) \\
\hline \& \begin{tabular}{l}
3397 \\
1974 \\
24.3 \\
\hline 1
\end{tabular} \& \& 7959 \({ }^{\text {anhy }}\). \(660^{\circ}\) \& dec. \(1450^{\circ}\) \& -0022/18 \({ }^{\circ}\) \\
\hline \multirow[t]{2}{*}{hydride, \({ }_{\text {iodide, }} \mathrm{BaH}_{2}{ }_{2}\).} \& 244.3
1394 \& \({ }^{3} 4.2 / 0^{\circ}\) \& \(\underset{\substack{\text { anhy. } \\ \text { volatile }}}{\text { a }}\) \& \({ }^{2 \mathrm{H}_{2} \mathrm{O} / 1100^{\circ}}\) \& see p.125. \\
\hline \& 391.2 \& \& \(740^{\circ}\) \& \& 170/10 \\
\hline \multirow[t]{2}{*}{nitrate, \(\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}\)
oxide, BaO.} \& 361.4

15 \& $3.24 / 23^{\circ}$ \& \& \& $5 / 0^{\circ}$

\hline \& \& $477-5 \cdot 5$ \& $\mathrm{BaO}_{2} / 450^{\circ}$ \& \&

\hline ${ }_{\text {sulphate, }{ }^{\text {en }} \text {, } \mathrm{BaSO}_{4} \text {. } \mathrm{BaO}_{2} \text {. }}$ \& 159.4
I66.4
2334 \& c. 4.5 \& $\mathrm{BaO} / 450^{\circ}$ \& \& insoluble

\hline \& \& \& \& \&

\hline bromide, Be \& 168.9 \& \& 601° \& \& soluble

\hline ${ }_{\text {chloride, }}^{\text {checle, }} \mathrm{BeCl}_{2} \mathrm{BeSO}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ \& ${ }^{80 \cdot 0}{ }^{1772}$ \& \& $$
\begin{gathered}
\text { c. } 600 \\
\text { dec. r. ht. }
\end{gathered}
$$ \& \& v. soluble $44 / 30^{\circ}$

\hline
\end{tabular}

INORGANIC COMPONDS \{contd.) For general heading, see p. rog.					
Substance and Formula.	$\begin{gathered} \text { Formula } \\ \text { weight } \\ (0=16) . \end{gathered}$	Density, gms./e.c.	Melting Point, ${ }^{\circ} \mathrm{C}$.	Boiling Point, ${ }^{\circ} \mathbf{C}$.	Solubility in Water.
Chlorine (contd.)oxide, di-, ClO_{2} Chrominm chloride (chromous), CrCl_{2}	$67 * 46$		$\begin{aligned} & \text { at./muns. } \\ & -76^{\circ} \end{aligned}$	$\begin{aligned} & \text { at./mms. } \\ & 9^{9} 9^{\circ} / 731 \end{aligned}$	$\begin{aligned} & \text { at./-tenp. } \\ & 20 \mathrm{~V} / 4^{\circ} \end{aligned}$
	122.92	$\left.\begin{array}{c} 2 \cdot 75 / 4^{\circ} \\ \left\{\begin{array}{c} 2.76615 \\ \text { A. } 15 / 1200^{\circ} \end{array}\right\} \end{array}\right\}$	-	$\text { c. } 1300^{\circ}$	v. soluble slgtly sol.
$\#$ (chromic), CrCl_{3}	$\begin{aligned} & 150^{\circ 3} \\ & 1520^{\circ} \\ & 1 \text { 100.0 } \\ & 662^{2} 65 \end{aligned}$				
oxide, $\mathrm{Cr}_{2} \mathrm{O}_{3}$ trio, CrO_{3}. sulphate, $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{8} 15 \dot{\mathrm{H}}_{2} \mathrm{O}$		$\begin{aligned} & 2.74 \\ & 1.867 / 17^{\circ} \end{aligned}$	$\left\|\begin{array}{c} \text { white he.t. } \\ 190 \\ 15 \mathrm{H}_{2} \mathrm{O} / 100^{\circ} \end{array}\right\|$	decomp.	$\begin{gathered} \text { insoluble } \\ 621 / 0^{\circ}(p) \\ 120 / 20^{\circ} \\ 102 \end{gathered}$
Cobaltcobaltous chloride,					
- ${ }_{\text {coCl }}\left(\right.$ and $\left.+6 \mathrm{H}_{2} \mathrm{O}\right)$	129.9		subl. c. 87°		
$\# \quad \begin{aligned} & \text { hydrate, } \mathrm{Co}(\mathrm{OH})_{2} \\ & \text { oxide, } \mathrm{CoO}\end{aligned}$	$\begin{aligned} & 9302 \\ & 74.98 \end{aligned}$	${ }^{3.6 / 15}$	dec. 10		insoluble insoluble
" sulphate, ${ }_{\text {coso }}, 7 \mathrm{H}_{2} \mathrm{O}$		1.918/15 ${ }^{\circ}$			26/3 ${ }^{\circ}$
cobaltic chloride, $\mathrm{COCl}_{3}{ }^{\text {a }}$.	165'35	2.94	sublimes		soluble
	$\begin{aligned} & 165.95 \\ & 406.15 \end{aligned}$		dec. r. ht.		$\begin{aligned} & \text { insoluble } \\ & \text { soluble } \end{aligned}$
umbium. Sce Niobium.					
				c. $1000{ }^{\circ}$	insoluble
ide, Cu	仿	5.8-6	red he		insoluble
cupric chloride, C	449		498	decomp.	75/17 7°
" nitrate, $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \mathrm{H}_{2} \mathrm{O}$	241.64	17	114%	$\left\{\begin{array}{l}170^{\circ} \\ \text { dec. r. ht. }\end{array}\right.$	$60 / 25^{\circ}(p)$
oxide, CuO	79.57	$6 \cdot 30$			insoluble
\# sulphate, $\mathrm{CuSO}_{4} 5 \mathrm{H}_{2} \mathrm{O}$	249.65	$2 \cdot 28 / 15^{\circ}$		dec. r. 1	see p. 12
Cyanogen, $\mathrm{C}_{2} \mathrm{~N}_{2}$	52.02	. $8866 / 17^{\circ}$ \}	-35°	-207°	$45^{5} / 20^{\circ}$
Erbium-					
sulphate, $\mathrm{Er}_{2}\left(\mathrm{SO}_{4}\right)_{3} 8 \mathrm{HH}_{2} \mathrm{O}$	767.14	$\begin{aligned} & 8 \cdot 68 \\ & 3 \cdot 18 \end{aligned}$	$\begin{aligned} & \text { infusible } \\ & \text { dec. } 950^{\circ} \end{aligned}$		${ }^{\text {Insolule }}$
${ }_{\text {sulphate, }} \mathrm{Gd}_{2}\left(\mathrm{SO}_{4}\right)_{3}$.	602:81	$4.14 / 15^{\circ}$	-		$2 \cdot 3 / 34^{\circ}$
chloride, tri-, GaCl_{3}	$176 \cdot 28$	A. $12 \cdot 2 / 240^{\circ}$	$75^{\circ} .5$	220	decomp.
Germanium -					
chloride, tetra-, GeCl_{4}. oxide, di-, GeO_{2}.	214.34	$\begin{aligned} & 1.89 / 18^{\circ} \\ & 4^{\circ} 70 / 18^{\circ} \end{aligned}$	-	86	$\underset{-4 / 20^{\circ}}{\text { decomp. }}$
Glucinum. Sce Beryllium. Gold- chloride, AuCl_{3} Hydrazine, $\mathrm{NH}_{2}, \mathrm{NH}_{2}$					
	303.5	1.01/15 ${ }^{\circ}$	$\begin{gathered} 288^{\circ} * \\ 1.4 \end{gathered}$	$\text { dec. } 180^{\circ}$$113^{\circ}$	$\begin{array}{c\|c\|} \hline 68 \\ \text { v. soluble } \end{array}$
$\xrightarrow{\text { hydroxide, }} \mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$	50.07	$\left\{\begin{array}{c} 1 \cdot 030 / 21^{\circ} \\ \left\{\begin{aligned} 1778 \\ A \cdot 277 \end{aligned}\right\} \end{array}\right\}$		119-687	v. soluble$221 / 0^{\circ}$$130 / 100^{\circ}$sce p.124.
Hydrobromic acid, HBr .	$80 \cdot 93$		-86		
Hydrochloric acid, HCl	36		-112	$-83 \cdot 1 / 755$	
Hydrocyanic acid, HCN	27.02	697/18 ${ }^{\circ}$	$-13 \cdot 8$	26.1	∞

[^20]| INORGANIC COMPOUNDS (contid.) For gencral heading, see p. 109. | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Substance and Formula. | $\begin{gathered} \text { Formula } \\ \text { weight } \\ (0=16) . \end{gathered}$ | Density, gms./c.c. | Melting Point, C. | Boiling Point, ${ }^{\circ} \mathrm{C}$. | Solubility in Water. |
| Hydrofluoric acid, HF | 20\%01 | $\left\{\begin{array}{c} \text { at.//iemp. } \\ 988 / 15^{\circ} \\ \text { A. } 691 \end{array}\right\}$ | $\begin{aligned} & \text { at. } / \mathrm{mms} . \\ & -92^{\circ} 3.3 \end{aligned}$ | $\begin{gathered} \text { at. } / \mathrm{mms} . \\ 19^{\circ} 4 \end{gathered}$ | at./temp. II $1 / 35^{\circ}$ |
| Hydriodic acid, HI | $127 * 93$ | A. $4 \cdot 38$ | -513 | $-36^{\circ} 7 / 75^{2}$ | $\left\{\begin{array}{l} 42,500 \\ V / 10^{\circ} \end{array}\right.$ |
| Hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$ | $34^{\circ} 02$ | $1.458 / 0^{\circ}$ | -6 | $80^{\circ} \cdot 2 / 47$ | v. soluble |
| selenide, $\mathrm{H}_{2} \mathrm{Se}$ sulphide, $\mathrm{H}_{2} \mathrm{~S}$ | S1.22 34.08 | A. $2 \cdot 805$
 \{liq. 9 | 86 | - | $331 \mathrm{~V} / 13^{\circ}$ $305 \mathrm{~V} / 15^{\circ}$ |
| sulphide, H telluride, H | 34.08 129.52 | \{ A. $1 \cdot 178$ \} | | | see p.124. |
| $\xrightarrow[\text { telluride, } \mathrm{H}_{3} \mathrm{Te}]{\text { Hydroxylamine, }} \stackrel{\mathrm{N}}{\mathrm{H}_{2}}$ | $33^{\circ} \mathrm{O}$ | A. $4.327 / 44^{\circ}$ | 33° | 0° | soluble soluble |
| Iodinetrichloride; ICl_{3} lodic acid, HIO_{3} | $\begin{aligned} & 233 \cdot 3 \\ & 175 \cdot 93 \end{aligned}$ | $\begin{gathered} 3.11 \\ 4.63 / 0^{\circ} \end{gathered}$ | $10 r^{\circ} / 16$ atm. $\frac{1}{2} \mathrm{H}_{2} \mathrm{O} / 170^{\circ}$ | dec. 25° | soluble $75 / 16^{\circ} p .$ |
| Iron- | | | | | |
| carbonyl, | $195 \cdot 85$ | $\left\{\begin{array}{c}1.49+/ 0^{\circ} \\ \text { A. } 6.5\end{array}\right\}$ | -197 | 64 | |
| ferrous chloride, FeCl_{2} " oxide, FeO. | $\begin{gathered} 126 \cdot 8 \\ 71 \cdot 85 \end{gathered}$ | 2.99/18 | - | volatilizes | $\begin{gathered} 50 / 19^{\circ} \\ \text { insoluble } \end{gathered}$ |
| " sulphate, $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ | 278.03 | 1•88 | 64 | $6 \mathrm{H}_{2} \mathrm{O} / 100^{\circ}$ | 20.8/10 ${ }^{\circ}$ |
| $" \quad\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} 6 \mathrm{H}_{2} \mathrm{O}$ | 392'15 | $1 \cdot 81$ | | | , |
| uxide (magnetic), $\mathrm{Fe}_{3} \mathrm{O}_{4}$. . | 23155 | \% | | | $188 / 75^{\circ}$ insoluble |
| ferric chloride, FeCl_{3} | 162.23 | $\left\{\begin{array}{l}\text { 2:8/11 } \\ \text { A. } 11.2 / 320^{\circ}\end{array}\right\}$ | 301 | $0^{\circ}-285^{\circ}$ | 537/100 ${ }^{\circ}$ |
| ", nitrate, $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} 9 \mathrm{H}_{2} \mathrm{O}$ | 404.02 | $1.683 / 20^{\circ}$ | $47 \cdot 2$ | decon | oluble |
| " oxide, F | 1597 | $5 \cdot 2$ | | | le |
| $" \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}\left(\right.$ and $\left.+9 \mathrm{H}_{2} \mathrm{O}\right)$ | $399^{\circ} 91$ | | | | v.slgt.sol. |
| Leadacetate, $\mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ | 379.2 | | | | |
| acetate, $\mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ carbonate, PbCO_{3} | $379 \cdot 2$
 267%
 18 | 25
 6.4
 8 | $3 \mathrm{H}_{2} \mathrm{O} / 75^{\circ}$ | 280 | 46/15 decomp. |
| chloride, PbCl_{2}. | 277° | $5 \cdot 8$ | 447° | c. 900 | |
| iodide, PbI_{2}, | $460^{\circ} 9+$ | $6 \cdot 12$ | 373 | 861-954 | \bigcirc |
| oxide, mon- (litharge | 223.1 | c. 9.3 | red heat | | -002/20 ${ }^{\circ}$ |
| ,, red lead, $\mathrm{Pb}_{3} \mathrm{O}_{4}$. | $68{ }^{\circ} 3$ | $9.09 / 15$ | dc. $500^{\circ}-530^{\circ}$ | | insoluble |
| , per-(brown), PbO_{2} | $239^{\circ} \mathrm{I}$ | S*91-9 | ecomp. | | nsoluble |
| sulphate, PbSO_{4}. | 303:2 | $6 \cdot 23$ | 937 | | ${ }^{\circ} 004 / 18^{\circ}$ |
| | | | | | |
| carbonate, $\mathrm{Li}_{2} \mathrm{CO}_{3}$
 chloride, LiCl . | 73.88 42.40 | 2.11 $2-2.07$ | $\begin{aligned} & 618-710 \\ & 491-600 \end{aligned}$ | $\text { dec. } \mathrm{w} . \mathrm{ht} .$ | see p. 12. |
| nitrate, LiNO_{3} | 68.95 | 2.3-2.4 | c. 258 | | 3510° |
| oxide, $\mathrm{Li}_{2} \mathrm{O}$ | 29:88 | $2 \cdot 10 / 15^{\circ}$ | | | $5 / 0^{\circ}$ |
| phosphate, $\mathrm{Li}_{3} \mathrm{PO}_{4} \cdot \mathrm{H}_{2}$ | 133.8 | $2 \cdot 4 / 15^{\circ}$ | 857 | | $\bigcirc{ }^{\circ}$ |
| sulphate, $\mathrm{Li}_{2} \mathrm{SO}_{4}$ | 110° | $2.21 / 15^{\circ}$ | 818-8 | - | $26 / 0^{\circ}$ |
| Magnesium- | | | | | |
| | $\begin{array}{r}8+3 \\ \hline 0.3\end{array}$ | | | | ${ }^{\circ} 1$ |
| chloride, $\mathrm{MgCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}$ | 203.34 | $156 / 17^{\circ}$ | $2 \mathrm{H}_{2} \mathrm{O} / 100^{\circ}$ | decomp. | 54/20 ${ }^{\circ}$ |
| nitrate, $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} 6 \mathrm{H}_{2} \mathrm{O}$ oxide, MgO | 256.44 40.32 | $\begin{aligned} & 1 \cdot 46 \\ & 3 \cdot 2-3 \cdot 7 \end{aligned}$ | $\begin{aligned} & 90^{\circ} \\ & >2000 \end{aligned}$ | 143 | $42 / 18^{\circ} p .$ |
| ${ }_{\text {phosphate, }}^{\text {oxide, }} \mathrm{Mg}_{3}\left(\mathrm{PO}_{4} \dot{\mathrm{P}}_{3} \cdot 4 \dot{\mathrm{H}}_{2} \dot{\mathrm{O}}\right.$ | 40.32 | $\begin{aligned} & 3.2-37 \\ & 1.64 / 15^{\circ} \end{aligned}$ | >2000 | | $\begin{aligned} & 01 \\ & 02 \\ & \hline 02 \end{aligned}$ |
| phosphate, $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ sulphate, $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$. | $335{ }^{2}$ $246 \cdot 5$ | 1.64/15 ${ }^{\circ}$ | $5 \mathrm{H}_{2} \overline{\mathrm{O} / 150^{\circ}}$ | | ${ }^{\circ} \mathrm{O2} 10^{\circ}$ |

PHYSICAL CONSTANTS

INORGANIC COMPOUNDS (contd.) For general heading, see p. Iog.					
Substance and Formula.	$\begin{aligned} & \text { Formula } \\ & \text { weight } \\ & (0=16) . \end{aligned}$	Density,	Melting Point, ${ }^{\circ} \mathrm{C}$.	Boiling Point, ${ }^{\circ} \mathrm{C}$.	Solubility in Water.
Manganese carbonate, MnCO_{3}. chloride, $\mathrm{MnCl}_{2} .4 \mathrm{H}_{2} \mathrm{O}$ nitrate, $\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ oxide, -ous, Mn 人 -ic, $\mathrm{Mn}_{2} \mathrm{O}_{3}$ $\stackrel{\text { tetr, }}{\#}, \mathrm{Mn}_{3} \mathrm{O}_{4}$ di-, MnO_{2} sulphate, ${ }^{*} \mathrm{MnSO}_{4} 4 \mathrm{H}_{2} \dot{\mathrm{O}}$			at. $/ \mathrm{mms}$. decomp. 87.5 white heat \qquad dec. 390 18° and $30^{\circ} \dagger$	at./mms.	
Mercury mercurous chloride, HgCl " nitrate,	$235 \cdot 46$	$\left\{\begin{array}{c} 6 \cdot 48 \text { and } 7 \cdot 2 \\ \text { A. } 8 \cdot 21 \end{array}\right\}$	400-500	sublimes	$\bigcirc 002 / 18^{\circ}$
	$\begin{aligned} & 298 \cdot 04 \\ & 496.07 \\ & 359.84 \\ & 270^{\circ} 92 \end{aligned}$	$\begin{aligned} & 478 \\ & 7.56 \\ & 5 \cdot 7 \\ & \{5 \cdot 3-5 \cdot 5\} \\ & \text { A. } 9.8\} \end{aligned}$	decomp. melts, dec. 244 287	decomp. subl. c. 322° 303-307	v. soluble 2 cold $1 / 9^{\circ}$ $54-20^{\circ}(p)$ see $p .125$.
$" \quad$ iodide, red, HgI_{2}	453.84	$\left\{\begin{array}{c}6 \cdot 2-6 \cdot 3 \\ \text { A. } 15 \cdot 6\end{array}\right\}$	241-257	349	-003/17 ${ }^{\circ}$
" yellow, HgI_{2}	453.84	$\left\{\begin{array}{c}5 \cdot 0-6 \cdot 1 \\ \text { A. } 15 \cdot 6\end{array}\right\}$	241	349	c
oxide, HgO sulphate, HgSO_{4}		$\begin{array}{r} 1114 \\ 6.47 \end{array}$	dec. r. ht. dec. r. ht.		-005/25 ${ }^{\circ}$ decomp.
Molybdenum chloride, MoCl_{5} oxide, di-, MoO_{2} tri-, MoO_{s}	$273^{\circ} 3$ $128^{\circ} 0$ $144^{\circ} 0$	A. $9.5 / 350^{\circ}$ $6.4 / 10^{\circ}$ $44 / 21^{\circ}$	$194{ }^{\circ}$	$\stackrel{268^{\circ}}{\text { sublime }}$	decomp. insoluble 2 cold
Nickel carbonyl, $\mathrm{Ni}(\mathrm{CO})_{4}$ chloride, NiCl_{2} nitrate, $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ sulphate, $\mathrm{NiSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	$170 \cdot 7$ $129^{\circ} 6$ $290 \cdot 8$ $280 \cdot 86$	$\begin{aligned} & 1.318 / 17^{\circ} \\ & 2.56 \\ & 2.06 / 14^{\circ} \\ & 1.98 \end{aligned}$	-25 sublimes ${ }^{58-100}$	$\frac{43^{\circ}}{136.7}$	$\begin{gathered} \text { insoluble } \\ 35 / /^{\circ}(p) \\ 48^{\circ} 5 / 188^{\circ} p . \\ 31^{\circ} 5 / 9^{\circ} \end{gathered}$
Niobinm - chloride, penta-, $\mathrm{NbCl}_{\mathrm{s}}$	2708	$\left\{\begin{array}{c} 4+4-4-5 \\ \text { A. } 96 / 360^{\circ} \end{array}\right\}$	194	$240^{\circ} 5$	decomp.
Nitrogennitric acid, HNO_{3}	63.02		413	dec. 8	
nitrous oxide, $\mathrm{N}_{2} \mathrm{O}$	44\%02	$\left\{\begin{array}{c} 1 \cdot 226 /-89^{\circ}{ }^{\circ} 4 \\ \text { A. } 1 \cdot 614 \end{array}\right\}$	-102	$-89^{\circ} 4 / 741$	$\left\{\begin{array}{l} 74 \mathrm{~V} / 15^{\circ} \\ \text { seep. } 124 . \end{array}\right.$
nitric \#	$30^{\circ} \mathrm{O}$	$\left(\begin{array}{c}.0013 \\ \text { A. } 1039 \\ 1.07\end{array}\right\}$	167	-153	($\begin{aligned} & 5{ }^{5} \mathrm{~V} / \mathrm{V} / 15^{\circ} \\ & \text { seep. } 24 .\end{aligned}$
nitrogen triox	76.02	$1.447 /-2^{\circ}$	-111	decomp.	soluble
" pentoxide, $\mathrm{N}_{2} \mathrm{O}$ " oxychloride, N	$\begin{gathered} 46 \cdot 1 \\ 108.02 \\ 65^{\circ} 47 \end{gathered}$	$149 / 0^{\circ}$ s $1.64 / 18^{\circ}$ $\mathrm{r}^{1} 416 /-12^{\circ}$	$\begin{gathered} -10.1 \\ 30 \\ -60 \end{gathered}$	$\left\lvert\, \begin{gathered} 26^{\circ} \\ \operatorname{dec} .45-50 \\ -5^{0.6} / 475 \mathrm{I} \end{gathered}\right.$	soluble soluble decomp.
$\begin{gathered} \text { Osmium } \\ \text { oxide, tetr-, } \\ \text { OsO } \end{gathered}$	$254{ }^{\circ}$		20	- 5	soluble
Ozone, O_{3}	48.00	$\left\{\begin{array}{l} 00214 \\ \text { A. } 1.659 \end{array}\right\}$	dec. 270°		v. slgt. sol.
Palladium chloride, $\mathrm{PdCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$	21365				soluble

INORGANIC COMPOUNDS (contd.) For general heading, see p. 100					
Substance and Formula.	$\begin{gathered} \text { Formula } \\ \text { weight } \\ (0=16) . \end{gathered}$	Density, gms./c.e.	Melting Point,	Boiling Point, ${ }^{\circ} \mathrm{C}$.	Solubility in Water.
Perchloric acid, HClO_{4} Phosphorus	$100 \cdot 47$	at./	$-$	$\begin{aligned} & \text { at./mms. } \\ & 19^{\circ} / \mathrm{II} \end{aligned}$	at./temp. soluble
bromide, tri-, PBr_{3}. chloride, tri-, PCl_{3}	$270 \cdot 8$	$\left\{\begin{array}{l}2^{\circ} 92 / 0^{\circ} \\ \text { A. } 9 \times 706\end{array}\right\}$	$-41^{\circ} .5$	175	p.
	137.3	$\left\{\begin{array}{c}1.612 / 0^{\circ} \\ \text { A. } 4.875 \\ .3 .2)^{\circ}\end{array}\right\}$	1	76	
fluoride, tri-, $\mathrm{PF}_{3}{ }^{\text {p }}$. ${ }^{\text {a }}$. .	208.3	A. $3.6 / 296^{\circ}$	148 -160	162	
	88.04 2202	A. $3.02{ }^{\circ} \mathrm{C} / 25^{\circ}$	22°	195 173	
oxide, tri-, $\mathrm{P}_{4} \mathrm{O}_{6}$. \Rightarrow tetr-, $\mathrm{P}_{2} \mathrm{O}_{4}$ pent-, $\mathrm{P}_{2} \mathrm{O}_{5}$ Phosphine, PH_{3} liquid, $\mathrm{P}_{2} \mathrm{H}_{4}$. Phosphonium chloride, $\mathrm{PH}_{4} \mathrm{C}$	220.2 126.1	1.94/2 $2.54 / 2$	225 >100	173 c. 18	olub
	$142 \cdot 1$	2.39	subl. r...ht.		v. soluble
	34.06 $60 \cdot 11$	A. $1 \cdot 185$ $1 \cdot 007-1 \cdot 016$	-133°	-8	slgtly sol.
		7-1.0	26	sub	insoluble
Platinum - chloride, tetra-, PtCl_{4} Potassium -	337°		26		e
bromide, KBr	110	$2 \cdot 76$	750	subl. w. ht.	5.
	138.2 122.56			$\begin{aligned} & \text { dec. } 810^{\circ} \\ & \text { dec. } 400^{\circ} \end{aligned}$	$89 / 0^{\circ}$ $3 / 0^{\circ}$
chloride, KCl . chromate, bi-, $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ cyanide, KCN ferricyanide, $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$. ferrocyanide, $\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	122.56 74.56	$1.99 / 15$	c. 770	dec. 400° subl. w. ht.	see p. 125.
	294.2	$2 \cdot 69 / 4$	400	decomp.	
	$65 \cdot 11$	1.52	red he	red heat	22/103 ${ }^{\circ}$
	329.21	1.82/	decomp		33
			$3 \mathrm{H}_{2} \mathrm{O} / 60-80$		28/12 ${ }^{\circ}$
hydroxide, KOH iodate, KIO_{3}.	56.11	204	red heat	subl. w. ht.	$\text { see p. } 125$
		3.97/18 8°	560		$8 / 20^{\circ}$
iodide, KI .	166.	$\left\{\begin{array}{c}3.04 / 24^{\circ} \\ \text { A. } 5.5 / 1320^{\circ}\end{array}\right\}$	614-723		$\left\{\begin{array}{c}127 / 0^{\circ} \\ \text { see p.125 }\end{array}\right.$
nitrate, KNO_{3} permanganate, KMnO_{4} sulphate, $\mathrm{K}_{2} \mathrm{SO}_{4}$ acid, KHSO_{4} sulphocyanate, KCNS		$\begin{aligned} & 2 \cdot 1 / 4^{0} \\ & 2 \cdot 70 / 10^{\circ} \end{aligned}$	$\begin{gathered} \text { c. } 345 \\ \text { dec. } 240^{\circ} \end{gathered}$	decomp.	see p. 125 $6 \cdot 4 / 15$
	$\begin{aligned} & 158.03 \\ & 174^{2} 27 \end{aligned}$	$\begin{aligned} & 2.70 / 10^{\circ} \\ & 2.66 / 20^{\circ} \end{aligned}$	$\begin{gathered} \text { dec. } 24 \\ 1070 \end{gathered}$	sublimes	$\begin{aligned} & 6.4 / 15 \\ & 9^{\circ} 2 / 10^{\circ} \end{aligned}$
	174.18 137	2.24*;2.61t	200	deco	36/0 ${ }^{\circ}$
	97.18		161		$7 / 20^{\circ}$
Radium- bromide, RaBr_{2}	$386 \cdot 2$		728		lu
Rubidium carbonate, $\mathrm{Rb}_{2} \mathrm{CO}_{3}$. chloride, RbCl sulphate, $\mathrm{Rb}_{2} \mathrm{SO}_{4}$			837		
	2309 1209	$2 \cdot 2$	710	dec. 740°	/10 $/ 0^{\circ}$
	$266 \cdot 97$	$3 \cdot 61$			$43 / 10^{\circ}$
Selenium-					
chloride, $\mathrm{Se}_{2} \mathrm{C}^{\text {a }}$ oxide, SeO_{2}	229 111.3		sub. c. 260	dec. c. 145	decomp. v. soluble
$\stackrel{\text { Selenious acid, }}{ } \mathrm{H}_{2} \mathrm{SeO}_{3}$	$129^{\circ} 22$				
Selenic acid, $\mathrm{H}_{2} \mathrm{SeO}_{4}$.	145.22			260	
Silicon-					
chloride, tetra-, SiCl_{4}	170.1		89	57°	comp.
fluoride, SiF_{4}.	1043		-102	-107	
- Monoclinic. \dagger Rhombic. amorph. $=$ amorphous ; cryst. $=$ crystalline ; dec. or decomp. $=$ decomposes; r. ht. $=$ red heat ; sub. or subl. $=$ sublimes ; $\mathrm{v} .=$ very ; w. ht. $=$ white heat.					

INORGANIC COMPOUNDS (contd.) For generai heading, see p. 109.					
Substanoe and Formula	$\begin{gathered} \text { Formula } \\ \text { weight } \\ (0=16) . \end{gathered}$	$\begin{aligned} & \text { Densi } \\ & \mathrm{gm} . \end{aligned}$	$\begin{aligned} & \text { Melting } \\ & \text { Point, } \\ & \text { on } \end{aligned}$	$\begin{aligned} & \text { Boiling } \\ & \text { Point, } \\ & \text { Oit. } \end{aligned}$	Solubility in Water.
Silicon (contd.) oxide (silica), amorph, SiO_{2} Silico chloroform, cryst., SiHCl_{3}	$\begin{gathered} 60^{6} 3 \\ 60^{\prime} 3 \\ 135^{\circ} \cdot 69 \end{gathered}$	$\begin{aligned} & 2.211 \\ & 2.66 \end{aligned}$	at./mms. $1500-1600^{\circ}$	$\frac{\text { at. / /mss. }}{\text { - }}$	insoluble
Silver- bromide, AgBr	187% 143		- $\begin{aligned} & 427 \\ & 460\end{aligned}$	dec. 700°	${ }^{-} 0_{2} 15 / 20$
chloride, AgCl iodide, AgI nitrate, AgNO sulphate, $\mathrm{Ag}_{2} \mathrm{SU}_{4}$	$\begin{aligned} & 234: 8 \\ & 169: 89 \end{aligned}$ $311 \cdot 83$		$\text { c. } 540$	ec. r. ht.	
Sodium- borate (borax̀), $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 1 \mathrm{oH}_{2} \mathrm{O}$					
bromide, NaBr carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$.				decomp.	
chlőride, NaCl bi-, NaHCO_{3}. hydroxide, NaOH .					
iodide, Nal nitrate, NaNO	1499		-69		
		$2 \cdot 27$	$\begin{aligned} & \text { c. } 313 \\ & \text { ceomp. } \end{aligned}$		$3 /$
phosphate, di-, sulphate, hydr.,	$\begin{aligned} & 358 \cdot 2 \\ & 1420 \end{aligned}$			$3 \mathrm{H}_{2} \mathrm{O} / c^{\prime} 160^{\circ}$	see
sulphite, $\mathrm{Na}_{2} \mathrm{SO}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$. thiosulphate (hypo'), $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$	252°	1.5	${ }_{7} \mathrm{H}_{2} \mathrm{O} / 150^{\circ}$	decomp.	
				dec. 220°	60/10
Strontium bromide, SrBr_{2} carbonate, SrCO_{3} chloride, SrCl_{2} (and $+6 \mathrm{H}_{2} \mathrm{O}$)			$\begin{aligned} & \begin{array}{l} 498-630 \\ \text { dec. } 1160^{\circ} \end{array} \end{aligned}$	dec. $\overline{\mathrm{r} . \mathrm{ht}}$.	
	158.5	3.05	6-854		
nitrate, $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$ oxide, SrO " per-, SrO_{3}			dec. 645		55/100
	119.6				
	$119^{\prime 6}$ 183	54	decomp. dec. w. ht.		ессом
Sulphur- dioxide, SO_{2}					$(4730 \mathrm{~V}$
trioxide, $\mathrm{SO}_{8} \times \cdot \cdots \cdot$					(
		183			
Sulphuric aci					
de, di-					
oxide, di-, $\#$ tri-,			dull r. ht decomp.		insolu
* Practically same for ordinary table salt as for pure salt (Hàrker).$\begin{aligned} & \text { anhy. }=\text { anhydrous } ; \text { dec. or decomp. }=\text { decomposes } ; \text { hydr. }=\text { hydrated } ; \mathrm{r} . \mathrm{ht} .=\text { red heat } ; \\ & \text { w. ht. }=\text { white heat } ; \infty=\text { soluble in all proportions. } \end{aligned}$					

Substance and Formula.	$\begin{aligned} & \text { Formula } \\ & \text { weight } \\ & (0=16) \end{aligned}$	Density, gms,/c.e.	Melting Point, C.	Boiling Point, ${ }^{\circ}$ C.	Solubility in Water
Thallium - carbonate, $\mathrm{Tl}_{2} \mathrm{CO}_{3}$. chloride, tri-, TlCl_{3} oxide (thallous), $\mathrm{Tl}_{2} \mathrm{O}$. sulphate, $\mathrm{TI}_{2} \mathrm{SO}_{4}$	$\begin{aligned} & 468^{\circ} 0 \\ & 310 \cdot 38 \\ & 424^{\circ} \\ & 504^{\circ} 7 \end{aligned}$	$\frac{\substack{\text { at./temp. } \\ 7 \cdot 1 \\ \hline 6.77}}{-}$	at. $/ \mathrm{mmss}$. 272°. 25 300 632	at./mms. decomp. \qquad decomp.	at./temp. 4/I5 v. soluble v. soluble $4.7 / 15^{\circ}$
Thorium - nitrate, $\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{4} \cdot 12 \mathrm{H}_{3} \mathrm{O}$ oxide, ThO_{2}	$\begin{aligned} & 696 \cdot 2 \\ & 264^{\circ} \circ \end{aligned}$	$9.87 / 15^{\circ}$	infusible	decomp.	v. soluble insoluble
Tin- chloride (stannous), SnCl_{2} " (stannic), SnCl_{4}.	189.92 260.84	$\left\{\begin{array}{c}2.27 / 20^{\circ} \\ \text { A. } 9^{\circ} 2\end{array}\right\}$	249° -33	620 114.1	$\begin{aligned} & 270 / 15^{\circ} \\ & \text { soluble } \end{aligned}$
oxide (stannous), $\mathrm{SnO}^{\text {che }}$ (stannic), SnO_{2}.	$\begin{aligned} & 135^{\circ} \\ & 151^{\circ} 0 \end{aligned}$	6.3 $6.6-6.9$	$\begin{aligned} & \text { dec. r. ht. } \\ & 1130 \end{aligned}$	-	insoluble
Titanium - chloride, tetra-, TiCl_{4}.	189*94	$\left\{\begin{array}{c}1.76 / 0^{\circ} \\ \text { A. } 6 \cdot 836\end{array}\right\}$	-25	136	decomp.
oxide, di-, TiO_{2} Tungsten-	$80 \cdot 1$	$3 \cdot 7-4 \cdot 2$	c. 1500	-	insoluble
chloride, hexa-, WCl_{6}. oxide, tri-, WO_{3}.	$396 \cdot 76$ 232.0	$\text { A. } 13.3 / 350^{\circ}$	$\begin{aligned} & 275 \\ & \text { red heat } \end{aligned}$	347	"
Uranium oxide, di-, UO,	$270{ }^{\circ}$	1009	oxidises		
" (green), $\mathrm{U}_{3} \mathrm{O}_{8}$	843.5	73	decomp.	-	
" (yellow), UO_{3}	$286 \cdot 5$		decomp.	-	
Uranyl chloride, ${ }^{2} \mathrm{UO}_{2} \mathrm{O}_{2}$	$557 \cdot 0$ $3+1.42$	8.4-9*	fusible	decomp.	$320 / 18^{\circ}$
nitrate, $\mathrm{UO}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	302:62	$2 \cdot 81$	$59^{\circ} 5$	118°	$320 / 18$ 200
Vanadium-					
chloride, tetra-, VCl_{4}	192.9	$\left\{\begin{array}{c}1.86 \\ \text { A. } 6.69\end{array}\right\}$	-18	154	soluble
oxide, pent-, $\mathrm{V}_{2} \mathrm{O}_{5}$	182.1	$3.5 / 20^{\circ}$	658	-	$0.8 / 20^{\circ}$
Zinccarbonate, ZnCO_{3} chloride, ZnCl_{2}	$\begin{aligned} & 125 \cdot 37 \\ & 136.29 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 2.91 / 25^{\circ} \end{aligned}$	$\begin{gathered} \text { dec. } 300^{\circ} \\ 262^{\circ} ? \end{gathered}$	730	$\begin{aligned} & 0.001 / 15^{\circ} \\ & 330 / 10^{\circ} \end{aligned}$
sulphate, $\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	287.55		$6 \mathrm{H}_{2} \mathrm{O} / 100^{\circ}$	$\left\{\begin{array}{l} 7 \mathrm{H}_{2} \mathrm{O} \text { at } \\ \end{array}\right\}$	
sulphide, ZnS .	$97^{\circ} 44$		$1050{ }^{\circ}$	(red heat.	insoluble
Zirconium oxide, ZrO_{2}		$5^{\cdot 1}-5 \cdot 7$	infusible	-	"

anhy. $=$ anhydrous ; dec. or decomp. $=$ decomposes ; r. ht. $=$ red heat ; $\mathrm{v} .=$ very.

FREEZING MIXTURES

Parts by weight.	Temp.	Parts by weight.	Temp.
I of $\mathrm{NH}_{4} \mathrm{NO}_{3}$, I of water 8 of $\mathrm{Na}_{2} \mathrm{SO}_{4}, 5$ of water	$\begin{aligned} & -15^{\circ} \mathrm{C} . \\ & -17 \end{aligned}$	2 of snow or crushed ice, 1 of NaCl . 3 of snow, 4 of cryst. CaCl_{2}	$\begin{aligned} & -18^{\circ} \\ & -48 \end{aligned}$

ORGANIC COMPOUNDS
Formula (Molecular) Weight, Density, Melting and Boiling Points.
For general heading, see p. Io9.

Substance and Formula.	Formula weight $(0=16)$	Density, gms./c.c.	Melting Point, ${ }^{\circ}$ C.	$\begin{aligned} & \text { Boiling } \\ & \text { Point, }{ }^{\circ} \mathrm{C} . \end{aligned}$
Acetaldehyde, $\mathrm{CH}_{3} . \mathrm{CHO}$	$44^{\circ} \mathrm{O} 3$	at./temp. $788 / 16^{\circ} \mathrm{C}$	at. $/ \mathrm{mms}$ -120°	$\begin{aligned} & \text { at. } / \mathrm{mms.} . \\ & 20^{\circ} .8 \end{aligned}$
Acetic acid, $\mathrm{CH}_{3} \cdot \mathrm{COOH}$	60.03	$\mathrm{I}^{\circ} 05 / 20^{\circ}$	16.7	$118.5, Y$
Aceto-acetic ether, $\mathrm{CH}_{3} \mathrm{CO}, \mathrm{CH}_{2} \mathrm{CO}_{2}$	130.1	1.028/20 ${ }^{\circ}$	<-80	181
Acetone, $\mathrm{CH}_{3} \mathrm{COCH}_{3}$	58.05	'797/15 ${ }^{\circ}$	-95	56.5
Acetylene, $\mathrm{C}_{2} \mathrm{H}_{2}$	$26 \cdot 02$	$\left\{46 /-7^{0}\right\}$	$-8 \mathrm{r} 5 / 895^{*}$	-85
Acrylic acid, $\mathrm{CH}_{2}: \mathrm{CHCO}_{2} \mathrm{H}$	72.03	$1.062 / 16^{\circ}$	10	140
Alizarine, $\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{CO})_{2} \mathrm{C}_{6} \mathrm{H}_{2}(\mathrm{OH})_{2}$.	240.1		290	430
Allyl alcohol, $\mathrm{CH}_{2}: \mathrm{CH}, \mathrm{CH}_{2} \mathrm{OH}$	58.05 76.46	-858/15 ${ }^{\circ}$	liquid	$96 \cdot 7$
", chloride, $\mathrm{CH}_{2}: \mathrm{CHCH}_{2} \mathrm{Cl}$. ${ }_{\text {el }}$.	76.46	937/19 ${ }^{\circ}$	liquid	46
\#, thiocyanate, $\mathrm{CH}_{2}: \mathrm{CHCH}_{2} \mathrm{CNS}$	99*08	$1.017 / 10^{\circ}$	liquid	151
Amyl acetate, $\mathrm{C}_{5} \mathrm{H}_{11} \cdot \mathrm{CH}_{3} \mathrm{CO}_{2} . \dot{\mathrm{C}}$ alcohol	130.1 88.10	.879/20 ${ }^{\circ}$	liquid	148
", alcohol (n.), $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2} \mathrm{OH}$ (act.), $\mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CHCH}_{2}$	$88 \cdot 10$	-812/20 ${ }^{\circ}$	liquid	137
$" \quad " \quad \mathrm{OH} \quad \therefore$.	$88 \cdot 10$	$.825 / 0^{\circ}$	liquid	
" \quad, (sec.), $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{8}$	88.10	$.825 / 0^{\circ}$	liquid	$118 \cdot 5 / 753$
	88.10	$.814 / 15^{\circ}$	-12°	102.5
Aniline, $\mathrm{C}_{6} \mathrm{H}_{5} . \mathrm{NH}_{2}$ - .	93.07	1.023/15 ${ }^{\circ}$	-8	183.9
Anisol, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{3} \cdot \dot{\mathrm{C}} \dot{\mathrm{H}} \dot{\mathrm{C}} \dot{\mathrm{H}}$	108.1	99/25	$-37 \cdot 8$	155
Anthracene, $\mathrm{C}_{6} \mathrm{H}_{4}: \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	178.1	$1 \cdot 15$	216	35 I
Antimony trimethyl, $\mathrm{Sb}\left(\mathrm{CH}_{3}\right)_{3}$. \quad.	165.3	1.52/15 ${ }^{\circ}$	liquid	86
Asparagine(1.) $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{NH}_{2} \mathrm{CO}_{2} \mathrm{H} . \mathrm{CONH}_{2}$	$132^{\circ} \mathrm{I}$	1.55/4 ${ }^{\circ}$	decomp.	decomp.
Benzaldehyde, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO} \cdot . \cdot$	1061	$1.05 / 15^{\circ}$	$-130 \cdot 5$	179.5
Benzene, $\mathrm{C}_{6} \mathrm{H}_{6} \dot{\mathrm{H}}^{\text {B }}$ - COH°	78.05	.879/20 ${ }^{\circ}$	$5 \cdot 4$	$80^{\circ} 2, \mathrm{Y}$
Benzoic acid, $\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{COOH}$	122.0	$1.20 / 21^{\circ}$	121.4	$249{ }^{2}$
Benzophenone, $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{CO}$.	182.1	$1.098 / 50^{\circ}$	48	306
Benzoyl chloride, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}$	$140^{\circ} 5$	$1.212 / 20^{\circ}$	-1	198/749
Benzyl alcohol, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}$	1081	1.043/20	liquid	$206 \cdot 5$
Beryllium ethyl, $\mathrm{Be}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$.	$67 \cdot 18$			187
Bismuth triethyl, $\mathrm{Bi}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}$.	$295{ }^{1} 1$	$2.3 / 18^{\circ}$	-	107
Borneol (i.), $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{OH} \quad$.	$154^{\circ} \mathrm{I}$	roi	210	sublimes
Bromo benzene, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$	$157^{\circ} 0$	$1.49 / 20^{\circ}$	-31'1	156, Y.
Butyl alcohol (n.), $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} . \mathrm{OH}$	74.08	. $81 / 20^{\circ}$	liquid	117.5
" \quad, (sec.), $\mathrm{CH}_{3} \mathrm{CHOH} . \mathrm{C}_{2} \mathrm{H}_{5}$	74.08	-819/22 ${ }^{\circ}$	-	$99^{\circ} 8$
" carbinol (tert.), $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C} . \mathrm{CH}_{2} \mathrm{OH}$	$88 \cdot 10$	-812/20 ${ }^{\circ}$		113
,. chloride, $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Cl}$	92.53	-887/20 ${ }^{\circ}$	liquid	78
", ether, $\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2} \mathrm{O}$ - ${ }^{\text {a }}$ -	$130^{\circ} \mathrm{I}$	-77/20		141
Butyric acid (n.), $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}$.	88.06	-96/19 ${ }^{\circ}$	-8	162.3
	88.06	950/20	-79	155
Cacodylic acid, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO} \cdot \mathrm{OH} .$.	$138^{\circ} 0$		200	
Caffeine, $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$.	212.3	$1.23 / 19^{\circ}$	234	sublimes
Camphor, $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$. ${ }^{\text {a }}$ - \cdot	$152^{\circ} \mathrm{I}$.992/10 ${ }^{\circ}$	176.4	$205 \cdot 3$
Camphoric acid (d. $), \mathrm{C}_{8} \mathrm{H}_{14}(\mathrm{COOH})_{2}$.	200'1	I.19	178	deccmp.
Caproic acid, $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH}$ Carbolic acid. See Phenol.	$116{ }^{1}$.929/20	8	205
Carbon bisulphide, $\mathrm{CS}_{2}{ }^{\circ}$	$76 \cdot 14$	$1.292 / 0^{\circ}$	110	
" oxysulphide, COS	$60 \cdot 07$	$2 \cdot 104$	-	gas
" tetrachloride, CCl_{4}	153.8	$\mathrm{I}^{5} 582 / 2 \mathrm{I}^{\circ}$	-30	$6 \cdot 7, \mathrm{Y}$

[^21]| ORGANIC COMPOUNDS (contd.)
 For general heading, see p. 109 . | | | | |
| :---: | :---: | :---: | :---: | :---: |
| Substanoe and Formula. | Formula weight ($0=16$). | Density, gms./c.c. | $\begin{aligned} & \text { Melting } \\ & \text { Point, }^{\circ} \mathrm{C} . \end{aligned}$ | Boiling Point, ${ }^{\circ} \mathrm{C}$. |
| Cellulose, $\left(\mathrm{C}_{6} \mathrm{H}_{20} \mathrm{O}_{5}\right)_{x}$
 Chlor acetic acid, $\mathrm{CClH}_{2}: \mathrm{COOH}$
 benzene, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ | 162.1 | at./temp. 1.525 | at. /mms. | at./mms. |
| | 94.48 112.5 | 1.39/75 ${ }^{1} 18 / 10^{\circ}$ | 63° -40 | $1 \overline{86^{\circ}}$ |
| | 112.5 165.4 | $1.118 / 10^{\circ}$ 1.9 | -40 | 132, Y. |
| | 1194 | $1.526 / 0^{\circ}$ | -70 | 97. 6 |
| | 228.1 | | 250 | sublimes |
| Chrysene, $\mathrm{C}_{18} \mathrm{H}_{12}$
 Cineol, $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$. | 1542 | 92 | -1 | 176 |
| Cinnamic acid, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}: \mathrm{CHCOOH}$ " aldehyde, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}: \mathrm{CH}-$ | $1+8 \cdot 1$ | $1 \cdot 247$ | 133 | 300 |
| Citric acid, $\left(\mathrm{CO}_{2} \mathrm{HCH}\right)_{2} \mathrm{C}(\mathrm{OH}) \dot{\mathrm{CO}}_{2} \dot{\mathrm{H}}^{\text {c }}$ | $132^{\circ} 1$ | $1.05 / 24^{\circ}$ | -7.5 | |
| | 192.1 | 1.54 | 153 | decomp. |
| Collidine, ${ }^{\circ} \mathrm{CH}_{3} \cdot \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}^{\bullet} \cdot \dot{\mathrm{C}}_{2} \dot{\mathrm{H}}_{5} \cdot$ | 121.1 | -953/22 ${ }^{\circ}$ | 15 | 180 |
| Coniine (d.), $\mathrm{I}^{\text {: }}: 2, \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N} . \mathrm{C}_{3} \mathrm{H}_{7}$ | 127° | -849/25 | -2.5 | 170 |
| Cresol (o.), $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH} . .$. | $108 \cdot 1$ | 1.005 | 30 | 191 |
| Cyanic acid, HCNO | $43^{\circ} \mathrm{O}$ | $1 \cdot 14 /{ }^{\circ}$ | liquid | dec. o |
| Cyanogen, $\mathrm{C}_{2} \mathrm{~N}_{2}$. | 52.02 | $\left\{\begin{array}{l} \text { liq. } \cdot 866 / 17^{\circ} \\ \text { A. } 1.806 \end{array}\right\}$ | -35 | -20.7 |
| Cymene (p.), $\mathrm{CH}_{3} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{C}_{3} \mathrm{H}_{7}$ | $134^{\circ} 12$ | . $852 / 25^{\circ}$ | liquid | 175 |
| Dextrin, $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{10}$ | 324° | 1.04 | | |
| Diacetyl, $\mathrm{CH}_{3} \mathrm{CO} . \mathrm{COCH}_{3}$. | 86.05 | 973 | - | 877 |
| Dichlor acetic acid, $\mathrm{CHCl}_{2} . \mathrm{COOH}$. | 128.9 | 1.522/15 ${ }^{\circ}$ | -4 | 190 |
| Diethyl amine, $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}$ | $73 \cdot 13$ | 706/20 ${ }^{\circ}$ | -40 | 55.5 |
| " aniline, $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{NC}_{6} \mathrm{H}_{5}$ | 149.2 | . $94 / 18^{\circ}{ }^{\circ}$ | liquid | 213.5 |
| - ketone, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COC}_{2} \mathrm{H}_{5}$ | 86.08 | . $83 / 1 \mathrm{o}^{\circ}$ | | ${ }^{103}$ |
| Dimethyl amine, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{HN}$ | 45.07 178.1 | 686/-60 | liquid | $8 \text { to } 9$ |
| Dinitrobenzene (m.), $\mathrm{C}_{6} \mathrm{H}_{4}$ | 178.1 168.1 | $1.341 / 150$ 1.37 | 48 91 | 280 |
| Diphenyl, $\mathrm{C}_{6} \mathrm{H}_{5} . \mathrm{C}_{6} \mathrm{H}_{5}$ | 154* | $1 \cdot 16$ | $70 \cdot 5$ | 255 |
| Diphenylamine, ($\left.\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{HN}$ | $169^{\circ} \mathrm{I}$ | 1159 | 54 | 310 |
| Epichlorhydrine, $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{ClO}$ | 92.49 | $1.203 / 0^{\circ}$ | | 116 |
| Erythrite, $\left(\mathrm{CH}_{2} \mathrm{OH} \cdot \mathrm{CHOH}\right)_{2}$ | 122. | $1.45 / 17^{\circ}$ | 112 | 330 |
| Ethane, $\mathrm{CH}_{8} . \mathrm{CH}_{3}$ | $30 \cdot 05$ | $\left\{\begin{array}{l}\text { liq. } \\ \text { A }\end{array}\right.$ | -1714 | $-85 \cdot 4 / 749$ |
| Ether, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5}$ | 74.08 | ${ }^{7} \mathrm{7} 8 / 17^{\circ}$ | -117 | |
| Ethyl acetate, $\mathrm{CH}_{3} \mathrm{CO}_{2} \cdot \mathrm{C}_{2} \mathrm{H}_{5} \cdot \dot{\text { aceto-acetate, } \mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CO}}$ | 88.06 | '903/18 ${ }^{\circ} \cdot 5$ | -83 | 771 |
| " aceto-acetate, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}_{3} \mathrm{COCH}^{\text {a }}$ | 130'1 | $1.028 / 20^{\circ}$ | <-80 | 181 |
| , alcohol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ | 46.05 | 7937/15 5° | I112.3 | 78.3, Y. |
| " amine, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{H}_{2} \mathrm{~N}$ | $45 \cdot 07$ | -699/8 ${ }^{\circ}$ | -85 | 18.7 |
| \#, benzoate, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} . \mathrm{C}_{2} \mathrm{H}_{3}$ | 150.1 | $105 / 16^{\circ}$ | 111-116 | 211.2 |
| ") bromide, $\mathrm{C}_{2} \mathrm{H}_{5}$. Br | 108.96 | 1.45/15 ${ }^{\circ}$ | -116 | 38.4 |
| butyrate, $\mathrm{C}_{3} \mathrm{H}_{7} . \mathrm{COOC}_{2} \mathrm{H}_{5}$. | 116.1 | -898/18 ${ }^{\circ}$ | | 120 |
| " chloride, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$ | 64.50 | $\left\{\begin{array}{l} 92 \mathrm{I} / 0^{\circ} \\ \mathrm{A} .2 .21 \end{array}\right.$ | liquid | 12.5 |
| ," cyanide, $\mathrm{C}_{2} \mathrm{H}_{5}$. CN | | ${ }^{\circ} 794 / 7^{\circ}$ | -103 | |
| " formate, $\mathrm{HCOOC}_{2} \mathrm{H}_{5}$. | 74.05 | $938 / 0^{\circ}$ | - | 54.3, Y. |
| ", iodide, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$ | 156.0 | $1.944 / 14^{\circ}$ | liquid | $72 \cdot 3$ |
| ", isobutyrate $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOOC} 2 \mathrm{H}_{5}$ | 116.1 | -890/0 ${ }^{\circ}$ | | 110.1 |
| " mercaptan, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{SH}$. | $62 \cdot 11$ | -839/20 ${ }^{\circ}$ | -22 | $36 \cdot 2$ |
| nitrate, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}_{3}$ | 91.08 | $1 \cdot 116 / 15^{\circ}$ | -112 | 87 |

ORGANIC COMPOUNDS (contd.) For general heading, see p. rog.				
Substance and Formula.	Formula weight $(0=16)$.	Density, gms./c.c.	Melting Point, ${ }^{\circ} \mathrm{C}$.	Boiling Point, ${ }^{\circ} \mathbf{C}$.
	$102 \cdot 1$ $166 \cdot 1$ $90 \cdot 15$ 206.I 130.1	at, /temp. -896/160 $1 \cdot 184 / 20^{\circ}$ -837/20 ${ }^{\circ}$ $1.206 / 20^{\circ}$ -876/20 ${ }^{\circ}$	at./mms.	$\begin{gathered} \text { at. } / \mathrm{mms} . \\ 99^{\circ}{ }^{\circ} \\ 231^{\circ} 5 \\ 92.6 \\ 280 \\ 144^{\circ} 5 \end{gathered}$
Ethylene, $\mathrm{CH}_{2}: \mathrm{CH}_{2} \cdots$.	28.03	$\left\{\begin{array}{l} \text { liq. } 61 \\ \text { A. } \cdot 9784 \end{array}\right\}$	-169	-102'7
bromide, di-, $\mathrm{CH}_{2} \mathrm{Br} . \mathrm{CH}_{2} \mathrm{Br}$ " chloride, di-, $\mathrm{CH}_{2} \mathrm{Cl} . \mathrm{CH}_{2} \mathrm{Cl}$	$\begin{aligned} & 187^{\circ} 9 \\ & 98.93 \\ & \hline \end{aligned}$	$\begin{aligned} & 219 / 11^{\circ} \\ & 1.28 / 0^{\circ} \\ & .897 / 0^{\circ} \end{aligned}$	$\begin{gathered} 95 \\ -40 \\ \text { liquid } \end{gathered}$	$\begin{array}{r} 131.6 \\ 83.7 \end{array}$
	$\begin{aligned} & 4403 \\ & 98.93 \end{aligned}$	$\begin{gathered} .897 / 0^{\circ} \\ 1.186 / 12^{\circ} \end{gathered}$	liquid liquid	$\begin{gathered} 13.5 / 746 \\ 59.9 \end{gathered}$
Eucalyptol, $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$	154.1	-927/20 ${ }^{\circ}$	-1	176
Eugenol, $\mathrm{C}_{6} \mathrm{H}_{3} \cdot(\mathrm{OH}) . \mathrm{OCH}_{3} \cdot \mathrm{C}_{3} \mathrm{H}_{5}$	$164^{\circ} \mathrm{I}$	$1.0779 / 0^{\circ}$	liquid	247%
Fluor benzene, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~F}$	96.04	$1.024 / 20^{\circ}$	40°	$85^{\circ 2}$, Y.
Formic acid, H. COOH .	$46 \cdot 02$	$1.22 / 20^{\circ}$	$8 \cdot 6$	
Formaldehyde, H. COH	$30^{\circ} 02$	$\left\{\begin{array}{l}815 /-20^{\circ} \\ \text { A. } 1.6\end{array}\right\}$		-21
Fructose (d.), $\mathrm{CH}_{2} \mathrm{OH}[\mathrm{CHOH}], \mathrm{CO}$ $\mathrm{CH}_{2} \mathrm{OH}$	180.1	$1.55 / 0^{\circ}$		
Fumaric acid, ($\mathrm{COOH} . \dot{\mathrm{CH}}:)_{2}$.	$116{ }^{\circ}$	$\begin{array}{r} 37 / \\ 1.625 \end{array}$	286	
Furfural, $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O} . \mathrm{COH}$ Galactose (d) $\mathrm{CHO} \mathrm{CHOH} \mathrm{CH}_{2} \mathrm{OH}$	96.03	$1.159 / 20^{\circ}$	liquid	161
Galactose (d.), $\mathrm{CHO}(\mathrm{CHOH}]_{4} \mathrm{CH}_{2} \mathrm{OH}$ Glucose (d.), $\mathrm{CHO}\left(\mathrm{HCOH}, \mathrm{CH}_{2} \mathrm{OH}\right.$.	180.1		163	
	198.1 $132 \cdot 1$	$1 \cdot 54-157$	146	299
Glycerine, OHCH_{2}. $\mathrm{CHOH} . \mathrm{CH}_{2} \mathrm{OH}$	92.06	$1 \cdot 26 / 20^{\circ}$	17	290
Glycocoll, $\mathrm{CH}_{2} \mathrm{NH}_{2} \mathrm{COOH}$.	75.08	1.161	c. 234	
Glycol, $\mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{2} \mathrm{OH}$	62.05	1.125/25 ${ }^{\circ}$	-17.4	1974
Glycollic acid, $\mathrm{CH}_{2} \mathrm{OH}$. COOH	76.03		78	decomp.
Glyoxal, CHO. CHO -	58.02			dec. 160
Glyoxalic acid, $\mathrm{CHO}, \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O}$ Grape sugar. See Glucose.	92.03	syrup	-	with steam
Heptane (n.), $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}$	100.1	-688/15 ${ }^{\circ}$	-	98.4, Y.
Hexane (n.), $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$	$86 \cdot 12$. $658 / 21^{\circ}$	liquid	$69, \mathrm{Y}$.
Hydrocyanic acid, HCN [(CN $\left.)_{2} \mathrm{CH}\right]_{2}$	$86 \cdot 12$. $668 / 17^{\circ}$	liquid	$58.1, \mathrm{Y}$.
Hydrocyanic acid, HCN . CO .	27.05	-697/18 ${ }^{\circ}$	-14	26.1
Indigo, $\mathrm{C}_{6} \mathrm{H}_{4}<\mathrm{NH}_{\mathrm{N}}^{\mathrm{CO}}>\mathrm{C}: \mathrm{C}<\mathrm{NH}_{\mathrm{N}}^{\mathrm{CO}}>\mathrm{C}_{6}-$				
H_{4}	262:2	135	-	subl. 156°
Indol, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NHCH}: \mathrm{CH}$	117.1			245
Iodoform, $\mathrm{CHI}_{3} \cdot \mathrm{CO}^{\circ} \cdot$	$393 \cdot 8$	$2.25 / 25^{\circ}$	119	subl. \& dec.
Isatine, $\mathrm{C}_{6} \mathrm{H}_{4}<\mathrm{N} \times \mathrm{COH}$	$147^{1} 1$		2 Cl	sublimes
Isoamyl acetate, $\mathrm{CH}_{3}, \mathrm{COOC}_{5} \mathrm{H}_{11}$	$\begin{gathered} 130^{\circ} 1 \\ 88 \cdot 10 \end{gathered}$	$876 / 15^{\circ}$	-134	
	88.10 58.08		-134	$\begin{aligned} & 129^{\circ} 7 \\ & 116^{\circ} 3 \end{aligned}$
Isobutyl alcohol, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} . \mathrm{CH}_{2} \mathrm{OH}$	74.08	-800/18 ${ }^{\circ}$	liquid	108.4
", amine, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{NH}_{2}$.	$73^{\circ} 13$	'736/15 ${ }^{\circ}$		68
Isobutyric acid, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} . \mathrm{COOH}$	88.06	.949/20	-79	155.5
Isopentane, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{3}{ }^{\text {I }}$ - ${ }^{\text {a }}$	$72 \cdot 10$. $628 / 14^{\circ}$		27.9
Isopropyl acetate, $\mathrm{CH}_{3} \mathrm{COOCH}\left(\mathrm{CH}_{3}\right)_{2}$ " alcohol, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{HC}(\mathrm{OH})$.	$\begin{aligned} & 102.1 \\ & 60.06 \end{aligned}$	$\begin{aligned} & 917 \\ & .789 / 20^{\circ} \end{aligned}$	liquid	$\begin{gathered} 90-93 \\ 82 \cdot 8 \end{gathered}$

For general heading, see p. 109.

Substance and Formula.	Formula weight $(0=16)$.	Density, gms./c.c.	Kelting Point, ${ }^{\circ}$ C.	Boiling Point, ${ }^{\circ}$ C.
$\begin{array}{r}\text { Isopropyl amine, }\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHNH}_{2} \\ \text { cyanide, }\left(\mathrm{CH}_{3} \mathrm{CHCN}^{2}\right.\end{array} . \quad$.	$\begin{aligned} & 59^{\circ} 11 \\ & 69^{\circ} 07 \end{aligned}$	at./temp. -690/18 \qquad	at./mms. liquid liquid	$\begin{aligned} & \text { ato/nms. } / \mathrm{mm} \mathrm{c}^{2} \\ & 31^{\circ} 5 / 747 \\ & 107-108 \end{aligned}$
Isoguinoline, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}$	129°	$1.098 / 20^{\circ}$	24.6	240
Isovaleric acid, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{COOH}$	102.1	931/20 ${ }^{\circ}$	-51	${ }^{176 \cdot 3}$
Lactic acid (i.), $\mathrm{CH}_{3} \mathrm{CHOH} . \mathrm{COOH}$ Lactose. See Milk sugar.	$90 \cdot 05$	$1.248 / 15^{\circ}$		$83 / 1 \mathrm{~mm}$.
Maleic acid, ($\mathrm{COOH} . \mathrm{CH}$	116.0	1×59	00	deco
Malic acid (i.), $\mathrm{COOH} \mathrm{CHOH} . \mathrm{CH}_{2}$ -	134°	$1.60 / 20^{\circ}$	130-1	
Malonic acid, $\mathrm{COOH} . \mathrm{CH}_{2} . \mathrm{COOH}$.	$10+0$		132	decomp.
Maltose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+\mathrm{H}_{2} \mathrm{O}$	$360^{\circ} 2$ 230°	$1.54 / 17^{\circ}$ 3.07		
	230° 120	3.87 $.869 / 10^{\circ}$	quid	96 164.5
Methane, CH_{4}	16.03	liq. $416 /-164^{\circ}$	-184	-164
Methyl alcohol, $\mathrm{CH}_{3} \mathrm{OH}$	$32 \cdot 03$	796/15 ${ }^{\circ}$	-94*9	647\% Y.
" acetate, $\mathrm{CH}_{3} \mathrm{COO} . \mathrm{Cl}$	74.05	. $941 / 14^{\circ}$	-101.2	57^{1}
" amine, $\mathrm{CH}_{3} \mathrm{H}_{2} \mathrm{~N}$	31.08	$\left\{\begin{array}{l}699 /-11^{\circ} \\ \text { A } 1.08\end{array}\right\}$	gas	$-6 \cdot 7 / 756$
" borate, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{BO}_{3}$	104* ${ }^{\text {I }}$	94/0 ${ }^{\circ}$	-	65
" chloride, $\mathrm{CH}_{3} \mathrm{Cl}$	50'48	$\left\{920 / 18^{\circ}\right.$	-	24^{1}
,, ether, (CH	46.05	A 1.62	gas	-23.6
", ethyl ether, $\mathrm{CH}_{3} \cdot \mathrm{O} \cdot \mathrm{C}_{2} \mathrm{H}$	60.06	${ }^{\circ} 725 / 0^{\circ}$	-	108
,, formate, $\mathrm{HCOO} . \mathrm{CH}_{3}$	60.03	-986/11 ${ }^{\circ}$		31.9 , Y.
", iodide, $\mathrm{CH}_{3} \mathrm{I}$	$142^{\circ} \mathrm{O}$	$2.285 / 15^{\circ}$	liquid	$42 \cdot 3$
" isobutyrate, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOOCH}_{3}$	102.1	$912 / 0^{\circ}$		92.3
", mercaptan, CH_{3}. SH	48.09			${ }_{65}{ }^{5 \cdot 8 / 752}$
", nitrate, $\mathrm{CH}_{3} \cdot \mathrm{NO}^{\text {nitrite, } \mathrm{CH}_{3} \cdot \mathrm{NO}_{2}}$	77.03 61.03	9) $1 / 15^{\circ}$	liqui	explodes
", phosphine, $\mathrm{CH}_{3} \mathrm{H}$	48.04		gas	14
", propionate, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO} . \mathrm{CH}_{3}$	88.06	$937 / 0^{\circ}$		$79^{\circ} 7$
", salicylate, $\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH}) \mathrm{COOCH}_{3}$	$152^{\circ} 1$	$1.182 / 15^{\circ}$	-30	224
" sulphide, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}$. . . .	$62 \cdot 12$	-845/21 ${ }^{\circ}$	liquid	c. 38
Methylene bromide, $\mathrm{CH}_{2} \mathrm{Br}_{2}$	173.9	$2 \cdot 493$		98.5
Milk sugar, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+\mathrm{H}_{2} \mathrm{O}$	$360^{\circ} 2$	$1.525 / 20^{\circ}$	203 dec.	decomp.
Morphine, $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3}+\mathrm{H}_{2} \mathrm{O}$	303.2	$1 \cdot 32$ -		decomp.
Naphthalene, $\mathrm{C}_{6} \mathrm{H}_{4}: \mathrm{C}_{4} \mathrm{H}_{4}$.	$128 \cdot 1$	$1.152 / 15^{\circ}$	80	218.1
Naphthol (α), $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{OH}$	$144^{1} 1$	$1.224 / 4^{\circ}$	95	c. 279
Naphthyl amine (α), $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{H}_{2} \mathrm{~N}$	143.1		50	300
Nicotine (1.), $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2}$.	162.2	$1.01 / 20^{\circ}$	dec. 250°	2467/745
Nitro benzene, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$.	123.1	$1.187 / 14^{\circ}$		209'4/745
" ethane, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}_{2}$	$75^{\circ} \mathrm{O}$	1.056	194-196	114.4
Octane (n.), $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}{ }^{\text {a }}$. . . .		$1.144 / 15$.719 5°	liquid	101.7 $125.8, \mathrm{Y}$.
Octane (n.), $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{3} \cdot$ Oleic acid, $\mathrm{CH}_{3}\left(\mathrm{CH}_{2} \mathrm{CH}_{7} \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{7}-\right.$	$114^{\circ} 1$	$719 / 0^{\circ}$	liquid	125.8, Y.
$\therefore \mathrm{COOH}$	2823	-891/12 ${ }^{\circ}$	14	286/100
Palmitic acid, $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{14} \mathrm{COOH}$	$256 \cdot 3$	- $846 / 76^{\circ}$	$62^{*} 6$	278/100
Paraldehyde, $\left(\mathrm{CH}_{3} \cdot \mathrm{HCO}\right)_{3}$.	$132 \cdot 1$	-994/20 ${ }^{\circ}$	$10 \cdot 5$	124
Penta methylene, $\left(\mathrm{CH}_{2}\right)_{6}$.	70.08	-751/20 ${ }^{\circ}$	-	50\%6
" $\mathrm{NH}_{2}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{NH}_{2} \ldots \ldots$, ${ }^{\text {c }}$	102.2	917/0 ${ }^{\circ}$	-	178

ORGANIC COMPOUNDS (contd.) For general heading, see p. 109.				
Bubstanoe and Formula.	$\begin{gathered} \text { Yormula } \\ \text { (weight } \\ (0=16) . \end{gathered}$	Density, gms./c.c.	Melting Point, ${ }^{\mathbf{C}}$.	$\begin{aligned} & \text { Boiling } \\ & \text { Point, }{ }^{\circ} \mathbf{C} . \end{aligned}$
Pentane (n.), $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$	72:10		at./mms.	$\begin{aligned} & \text { at/mms. } \\ & 36 \cdot \cdot 2, \mathrm{Y} . \end{aligned}$
Phenetol, $\left.\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{OC}_{2} \mathrm{H}_{2}\right)^{\text {a }}$.	122.08	-963/25 ${ }^{\circ}$	-34.	171
${ }_{\text {Phenol, } \mathrm{C}_{6} \mathrm{H}_{6} . \mathrm{OH}}^{\text {Phenyl a actic acid, }} \mathrm{C}_{6} \dot{\mathrm{H}} \dot{\mathrm{C}} \mathrm{H}_{2} \mathrm{COO} \dot{\mathrm{H}}$.	94.05 136.1	${ }^{1} \mathrm{r} 063 / 33^{\circ}$	$4{ }^{4} 27$	181.5 265
Phenyl a cetic acid, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{COOH}$.	${ }_{1}^{136 \cdot 1} 1$	123	$76 \cdot 5$	265
	103.1 108.1		${ }_{23}{ }^{-17}$	190 233
Phloroglucin, $\mathrm{I}: 3: 5, \mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{OH})_{3} \mathrm{H}_{2} \mathrm{O}$	${ }_{162 \cdot 1}^{10}$	ITI 23	218 anly.	sublimes
Phthalic acid, o. $\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{COOH})_{2}{ }^{\text {a }}$	166.1	159	180-200	
, ${ }^{\text {a }}$ anhydride, $\mathrm{C}_{6} \mathrm{H}_{4}<(\mathrm{CO})_{2}>0$	1480\%	$1.53 / 4^{\circ}$	128	284
Picoline (α), $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}$.	93.07	933/22 ${ }^{\circ}$	liquid	129
Picric acid, $1: 2: 4: 6, \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{OH}\left(\mathrm{NO}_{2}\right)_{\text {s }}$.	${ }^{229}{ }^{\circ} \mathrm{I}$	1.813	$122 \cdot 5$	explodes
Propane, $\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{3}$ - $\dot{\mathrm{Co}} \dot{\circ}$	44.07	. 535	-195	-(38-39)
Propionic acid, $\mathrm{CH}_{3} . \mathrm{CH}_{2}, \mathrm{COOH}$	74.05	995/20 ${ }^{\circ}$	-22	140
Propyl acetate (n.), $\mathrm{CH}_{3} \mathrm{COO}_{3} \mathrm{CO}_{3} \mathrm{H}_{7}{ }^{\text {a }}$	${ }^{102 \%}$	$891 / 18^{\circ}$	liquid	1016
alcohol (n .), $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} . \mathrm{OH}$	$60 \cdot 06$	804/20		97.2
\#, chloride (n.), $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$.	78.51 88.06 88	$891 / 18^{\circ}$		$46 \cdot 5$
	88.06	-909/17 7°		$80^{\circ} \mathrm{\prime}$, Y.
	170°	1.745/20		102
Pseudo-cumene, $1: 2: 4, \mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{3}\right)_{3}$	42.05	- $879 / 20^{\circ}$	gas	-50.2
Pyridine, $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}$. ${ }^{\text {Pr }}$	$120 \cdot 1$ 7908	$985 / 15^{\circ}$	liquid	117
Pyrogallol (-ic acid, or "pyro"),				
I: $2: 3, \mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{OH})_{3}$ Pyrrol, $(\mathrm{CH})_{4}>\mathrm{NH}$	$126 \cdot 1$ 67.08	$\begin{array}{r} 1.46 / 40^{\circ} \\ \\ 9.967 / 21^{\circ} \end{array}$	133 licuid	293
Quinoline, $\mathrm{C}_{6} \mathrm{H}_{4}<\mathrm{CH}$. CH	129.1	-1/20		
Quinine, $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$	324*3	-	1749	
\#. sulphate, $\left(\mathrm{C}_{20} \mathrm{H}\right.$				
$\mathrm{H}_{2} \mathrm{SO}_{4}+7 \mathrm{H}_{2} \mathrm{O}$	$872 \cdot 7$		205 , dry	
$\begin{aligned} & \text { accemic } \\ & +\mathrm{H}_{2} \mathrm{O} \end{aligned}$	168.1	$1.69 / 7^{\circ}$	205	
Rochelle salt (d.), $\mathrm{KNaC}_{4} \mathrm{H}$				
Rosaniline (p.), $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}\right)_{3} \mathrm{COH}$.	305\%2			
	183.1		220 dec .	
Salicylic acid, $\mathrm{OH} . \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{COOH}$.	${ }^{13} 3^{\circ} \mathrm{O}$	$148 / 4^{\circ}$	158	limes
		843/80 ${ }^{\circ}$	69.3	91/1
Stearine, $\left(\mathrm{C}_{18} \mathrm{H}_{85} \mathrm{O}_{2}\right)_{3} \mathrm{C}_{3} \mathrm{H}_{5}$	$890 \cdot 9$	-924/65		
Succinic acid, $\mathrm{COOH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}$.	1180°		185	235
	$342^{\prime} 2$	r $5888 / 20^{\circ}$		185
$: 2 \mathrm{H}_{2} \mathrm{O} .$	209.2	-	chars	
	228.2	-	125	300 dec .
$[\mathrm{CHOH}]_{2} \mathrm{COOH} . \mathrm{H}_{2} \mathrm{O}$. ${ }^{\text {a }}$	168.1	1.67	142 anhy.	
" " (d. COOH	150\%	P.	170	
" ${ }^{\text {a }}$ (1.), $\mathrm{COOH}(\dot{\mathrm{C}} \dot{\mathrm{HOH}})_{2}-$		寿	170	
Terephthalic acid (p.) $\mathrm{C}_{6} \mathrm{H}_{4}(\dot{\mathrm{CO}} \dot{\mathrm{O}} \dot{\mathrm{H}})_{2}$		176	170	
$\text { Terpenol, } \mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$		-	70	

ORGANIC COMPOUNDS (contd.)

For general heading, see p. rog.

Substance and Formula.	Formula weight $(0=16) .$	Density, gms./c.e.	Melting Point, ${ }^{\circ} \mathrm{C}$.	$\begin{aligned} & \text { Boiling } \\ & \text { Point, }{ }^{\circ} \mathrm{C} . \end{aligned}$
Terpineol, $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{HO}$	154.1	at./temp. $936 / 20^{\circ}$	at./mms.	$\begin{aligned} & \text { at. } / \mathrm{mms} \text {. } \\ & 218^{\circ} \end{aligned}$
Tetrabromethylene, $\mathrm{CBr}_{2} . \mathrm{CBr}_{2}$	343.8		53	
Theobromine, $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{2} . .$.	$180^{\circ} 2$		330	decomp.
Thiocyanic acid, HCNS	$59^{\circ} 9$		-12.5	$200 \mathrm{dec} .$
Thiourea, $\mathrm{NH}_{2} . \mathrm{CS} . \mathrm{NH}_{2} \rightarrow \cdot \stackrel{\square}{ } \cdot$	$76 \cdot 12$	1.42	180	
Thymol, $3: 2: 1,\left(\mathrm{CH}_{3}\right)_{2}: \mathrm{CH} . \mathrm{C}_{6} \mathrm{H}_{3}-$ $\left(\mathrm{CH}_{3}\right) \mathrm{OH}$	150.1	.994/0	50	232
Tin tetramethyl, $\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{4}$	179.1	$1.314{ }^{\circ}$		78
	92.06	- $8.866 / 20^{\circ}$		111.
Toluidine (o.), $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NH}_{2}$. .	$107 \cdot 1$ $107 \cdot 1$	$.999 / 20^{\circ}$ $\mathrm{r} 046 /-$	${ }_{4}^{\text {liquid }}$	197
Trichloracetic acid, CCl_{3}. $\mathrm{COO} \mathrm{H}^{-}$	107 163.1	$1.63 / 61^{\circ}$	45 52.3	198 195
Triethyl amine, $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}$	1012	. $735 / 15^{\circ}$	liquid	89
" arsine, $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{As}$	$162^{\circ} \mathrm{I}$	$1.15 / 17^{\circ}$	liquid	$\left\{\begin{array}{c}140 / 736 \\ \text { dec. }\end{array}\right.$
" phosphine, $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)$, 1	118.1	-812/15 ${ }^{\circ}$	liquid	127/744
Trimethyl amine, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$	$59^{\circ} \mathrm{S}$. $673 / 0^{\circ}$	-	-3.5
$" \quad$ arsine, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{As}$.	120°		-	<100
" bismuth, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Bi}$.	253.1	$2.30 / 18^{\circ}$	-	110
$" \quad$ carbinol, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C} . \mathrm{OH}$	74.08	$786 / 20^{\circ}$	25	$82^{\circ} 9$
Trinitro benzene (s.) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{P} . \mathrm{C}^{\text {d }}$ -	76.07	I	liquid	41
rinitro benzene (s.), $1: 3: 5, \mathrm{C}_{6} \mathrm{H}_{3}-$ $\left(\mathrm{NO}_{2}\right)_{3}$	213.1		121.2	decomp.
Turpentine (pinene), $\mathrm{C}_{10} \mathrm{H}_{16}$. .	136.1	-865/15 ${ }^{\circ}$	-	159
Urea, $\mathrm{NH}_{2} \mathrm{CO} . \mathrm{NH}_{2}$	$60 \cdot 11$	${ }^{-1} 32$	132	decomp.
Valeric acid (n.), $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} . \mathrm{COOH}$	102'I	943/20	- 58.5	$186 \cdot 4$
Xylene (o.), $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right)_{2}$.	$106 \cdot 1$	$\bigcirc 56 / 14^{\circ}$	-28	142
," (m), "	$106 \cdot 1$	$878 / 0^{\circ}$	-54	139.8
\% ${ }^{\text {(p) }}$,	$106 \cdot 1$	-862/20 ${ }^{\circ}$	15	138
Zinc ethyl, $\mathrm{Zn}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$	123.5	1:182/18 8°	-28	118
" methyl, $\mathrm{Zn}\left(\mathrm{CH}_{3}\right)_{2}$	$95 \cdot 42$	$1386 / 10^{\circ}$	-40	46

dec. or decomp: $=$ decomposes.

ELECTROCHEMICAL EQUIVALENTS

Faraday's laws of electrolysis are expressed by $m=i z t$, where m is the mass in grammes of an ion liberated in t secs. by a current of i amperes; z is the electrochemical equivalent of the ion, i.e. the mass liberated by 1 ampere in 1 second.

The exactness of Faraday's laws is obscured in many cases by secondary chemical reactions, and the values of the different electrochemical equivalents are practically always derived by calculation from that of silver, which has been accurately determined (see p. 8). Electrochemical equivalents are proportional to chemical equivalents.

Chemical equivalent $=\frac{\text { atomic weight of element }}{}$
$=\overline{\text { valency of element for electrolyte used }}$
Element.

Chemical equivalent.

z.
Silver
$\left.\begin{array}{rl}107 \cdot 88 / 1 & \ldots\end{array}\right) \quad 0.0011183 \mathrm{gm}$. sec. $^{-1}$ amp.
$63.57 / 2$. . . 0.0003295
Hydrogen
r.003/1

000001045

```
(see p. 106)
```


SOLUBILITIES OF GASES IN WATER

AIR IN WATER

$1000 \mathrm{c} . \mathrm{cs}$. of water saturated with air at a pressure of 760 mms . contain the following volumes of dissolved oxygen, ctc., in c.cs. at 0° and 700 mms .

	Temperature of Water.						
	$0^{\circ} \mathrm{C}$.	5°	10°	15°	20°	25°	30°
Oxygen	$\begin{array}{\|c\|c\|} \text { c.cs. } \\ 10^{\circ} 19 \end{array}$	8.9	779	$7{ }^{\circ}$	$6 \cdot 4$	$5 \cdot 8$	$5 \cdot 3$
Nitrogen, argon, etc.	$19^{\circ} 0$	$16 \cdot 8$	15°	13.5	$12 \cdot 3$	$11 \cdot 3$	10.4
Sum of above . ${ }^{\text {a }}$	$29^{\circ} \mathrm{L}$	25.7	22.8	$20^{\circ} 5$	$18 \cdot 7$	$17 \cdot 1$	$15 \cdot 7$
\% of oxygen in dissolved air (by vol.)	34\%9\%	347	$3+5$	34°	34°	$33 \cdot 8$	33.6

GASES IN WATER

S indicates the number of c.cs. of gas measured at 0° and 760 mms . which dissolve in I c.c. of water at the temperature stated, and when the pressure of the gas plus that of the water-vapour is 760 mms .

A indicates the same, except that the gasitself is at the uniform pressure of 760 mms , when in equilibrium with the water. (For other values, see p. 109.)

Cas.	$0^{\circ} \mathrm{C}$.	10°	15°	20°	30°	40°	50°	60°
Ammonia, A	$\begin{array}{r} \text { c cs. } \\ 1300 \end{array}$	910	802	710	595/28 ${ }^{\text {c }}$	-	-	
Argon, A.	-058	-045	-040	$\bigcirc 037$	\bigcirc	-027		
Carbon dioxide, A	1713	1.194	1-019	-878	-66	53	44	36
Carbon monoxide, A	-035	$\bigcirc{ }^{\circ} \mathrm{O} 8$.025	-023	-020	-18	-016	$\cdot 15$
Chlorine, S		3.09	$2 \cdot 63$	$2 \cdot 26$	1×7	1.41	1:20	1*0
Helium, A	- 0150	- 144	-0139	-138	-0138	-139	-0140	
Hydrogen, A	. 0215	- 0198	- 0190	-0184				
Hydrochloric acid,	506	474	458	442	411	386	362	339
Nitrogen, A.	$\bigcirc 0239$	- 0196	- 0179	- 0164	-0138	-118	- 0106	OIOO
Nitrous oxide, A	$1.05 / 3^{\circ}$	-88	74	-63	-	-	-	-
Nitric oxide, A	-074	-057	$\bigcirc 051$	-047	- 040	-035	-031	-029
Oxygen, A ${ }^{\text {S }}$, ${ }^{\text {a }}$	$\begin{array}{r}.049 \\ \hline .68\end{array}$	-038	.034	-031	-26	${ }^{\circ} \mathrm{O} 3$	-21	-19
Sulphuretted hydrogen, A	$4 \cdot 68$	3.52 56.6	3.05	2.67	--			
Sulphur dioxide, S . .	79.8	56.6	$47 \cdot 3$	$39^{\circ} 4$	$27^{\circ} 2$	18.8		

$\mathrm{Ne},{ }^{\circ} 1{ }^{1} 47 / 20^{\circ} ; \mathrm{Kr}, \cdot 0670-{ }^{\circ} 0788 / 20^{\circ} ; \mathrm{Xe}, \cdot{ }^{\cdot 1109 / 20^{\circ}-\text { Antropoff, } 1910 .}$

MUTUAL SOLUBILITIES OF LIQUIDS

The data for the uppermost layer of the two solutions in equilibrium are given in the first line in each case. The pressure in some cases exceeds one atmosphere. Numbers are grams per roo grams of solution. (From data in Seidell's "Solubilities.")

SOLUBILITIES OF SOLIDS IN WATER

$s=$ number of grams of anhydrous substance which when dissolved in 100 grams of water make a saturated solution at the temperature stated.
$p=$ no. of grams of anhydrous substance per 100 grams of saturated solution.
The formula given is that of the solid phase which is in equilibrium with the solution. (See Seidell's "Solubilities," New York, 1907, where the most complete and accurate.data will be found for solubilities.) For other solutions, see p. IO9.

Substance.		$0^{\circ} \mathrm{C}$	10°	15°	20°	40°	60°	80°	100°
Am. chloride, NH_{4}	s	294	33	$35^{\circ} 2$	$37 \cdot 2$	45	55.2	65	$77 \cdot 3$
Barium chloride, $\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$	s	31	33.3	$3+$				52	58.8
Barium hydrate,									
$\mathrm{Ba}(\mathrm{OH})_{2} .8 \mathrm{H}_{2}$	s	$1 \cdot 67$	2.48	$3 \cdot 23$	$3 \cdot 89$	$8 \cdot 22$	$20 \cdot 9$	1014 4	
Bromine (liquid), Br.	s	$4 \cdot 22$	$3 \cdot 4$	3.25	$3 \cdot 20$				
Cadmium sulphate, $\mathrm{CdSO}_{4} \cdot 8 / 3 \mathrm{H}_{2} \mathrm{O}$.	s	,	76.0	$76 \cdot 3$	$76 \cdot 6$	$78 \cdot 5$	$83 \cdot 7$	69.7*	7
Ca.hydrate, $\mathrm{Ca}(\mathrm{OH})$,	s	${ }^{1} 85$	$\cdot 176$	${ }^{170}$	$\cdot 165$	-141	${ }^{116}$	${ }^{\circ} \mathrm{O} 94$	$\bigcirc 077$
Copper sulphate, $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$	s								
Li.carbonate, $\mathrm{Li}_{2} \mathrm{CO}_{3}$	s	14.54	14.4	$1 \cdot 38$	1.33	${ }^{28} 117$	${ }^{1} \times 1$	55.850	
Merc.chloride, HgCl_{2}	p	3.50	4.50	$5{ }^{\circ} 0$	540	$9 \cdot 30$	14*0	23.1	38.0
Potass. chloride, KCl	s	27.6	31°	32.4	34°	40°	$45^{\circ} 5$	51^{1}	56.7
Potass. bromide, KBr		53.5	59.5	$62 \cdot 5$	65°	$75 \cdot 5$	$85^{\circ} 5$	95°	104
Potassium iodide, KI	s	127.5	136	140	144	160	176	192	208
Potassium hydrate, $\mathrm{KOH} .2 \mathrm{H}_{2} \mathrm{O}$.	s	97º	103		112		-		178 §
Potass.nitrate, KNO_{3}	s	$13^{*} 3$	20.9	25.8	32	64	110	169	246
Silv: nitrate, AgNO_{3}	s	122	170	196	222	376	525	669	952
Sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 1 \mathrm{IOH}_{2} \mathrm{O}$	s	70				461	46°		$45^{\circ} 5$
Sod. chloride, NaCl	s	$35 \cdot 7$	$35^{\circ} 8$	$35 * 9$	36.0	$36 \cdot 6$	37	38	39°
Sodium sulphate, $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$.									
$\underset{S t r o n t i u m ~ c h l o r i d e, ~}{\text {, }}$	s	5							
$\xrightarrow{\text { SrCl }} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$.	s	43	48	50	53	65	82	91	ror \ddagger
Succinic acid, $\left(\mathrm{CH}_{2}\right)_{2}(\mathrm{COOH})$	s	$2 \cdot 80$	50	5%	6.9	16%	$35 \cdot 8$	$70 \cdot 8$	125
Sugar (Cane),				5					
$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$.	s	179	190	197	204	238	287	${ }_{3} 62$	487

* Solid phase becomes $\mathrm{CdSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ at 74°. $\quad+$ Becomes $\mathrm{Na}_{2} \mathrm{SO}_{1}$ at $32^{\circ} 3^{\circ} \mathrm{S}$.
\ddagger Becomes $\mathrm{SrCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ at 70°. § Becomes KOH $\frac{3}{2} \mathrm{H}_{2} \mathrm{O}$ at $32^{\circ} \cdot 5$ and $\mathrm{KOH} \cdot \mathrm{H}_{2} \mathrm{O}$ at 50°.
|| Becomes $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ at 35°.

COMPOSITION OF DRY ATMOSPHERIC AIR

(Ramsay, Proc. Roy. Soc., 1908 ; G. Claude, Compt. Rend., 1909.)

	N_{2}	O_{2}	1	CO_{2}	Kr	Xe	Ne	He
By volume.	78.05	$21^{\circ}{ }^{*}$	95	$\bigcirc 3$ to 3	-	-	$\circ_{2} 123$	$\cdot 0_{3} 40$

MOHS' SCALE OF MINERAL HARDNESS
The numbers are not quantitative, but merely indicate the sequence of hardness.

Hardness.	Mineral,	Hardness.	Mineral.	Hardness.	Mineral.
	Talc	5	Apatite	9	Corundum
$\mathbf{2}$	Rock salt	6	Felspar	10	Diamond
$\mathbf{3}$	Calcspar	7	Quartz	$c .2 .5$	Finger-nail
4	Fluor spar	8	Topaz	$c .6 .5$	Penknife

COMPOSITION, DENSITY, AND HARDNESS OF SOME MINERALS
See Dana's "System of Mineralogy" and Appendices, 1892, 1899, and 1909. Radioactive minerals are indicated thus *; see Szilard, Le Radium, August, 1909.

Name and Formula.	Donsity.	Hardness.	Name and Formula.	Density.	$\begin{gathered} \text { Hard- } \\ \text { ness. } \end{gathered}$
Albite, $\mathrm{Na}_{2} \mathrm{Al}_{2} \mathrm{Si}_{6} \mathrm{O}_{10}$ Amber (fossil resin)	$\text { c. } 2.6$ $\begin{array}{r} c .20 \\ \text { ro } \end{array}$	6-7	Mica (common, Musco vite),	$2 \cdot 7-3^{\prime} 1$	2-2.5
Anhydrite, CaSO_{4}	2.8-2.9	3-3.5			
Anorthite, $\mathrm{Ca}_{2} \mathrm{Al}_{4} \mathrm{Si}_{4} \mathrm{O}_{16}$.	c. 2.7	6-7	Mica (Biotite, Magnesia	$2 \cdot 7-3^{\prime} 1$	2.5-3
Apatite, $\mathrm{Ca}_{5}(\mathrm{Cl}, \mathrm{F}, \mathrm{OH})\left(\mathrm{PO}_{4}\right)_{3}$	2.9-3.2	5	$\text { mica) }{ }_{\text {Monazite, }}$	5	$5 \cdot 2$
Aragonite, CaCO_{3}.	-	3'5-4	$(1-16 \% \mathrm{Th})$		
Augite, $\mathrm{Mg}, \mathrm{Fe}, \mathrm{Ca}, \mathrm{Al}$ silicate	$3 \cdot 2-3 \cdot 5$	5-6	Nepheline, $\mathrm{Na}_{6} \mathrm{~K}_{6} \mathrm{Al}_{8} \mathrm{Si}_{9} \mathrm{O}_{36}$	2.5-2.6	$5 \cdot 5$
Barytes, Heavy spar, BaSO_{4}	4.5	3-3'5	Olivine, $\mathrm{Mg}_{2} \mathrm{Fe}_{2} \mathrm{SiO}_{4}$. Orthoclase, $\mathrm{K}_{2} \mathrm{Al}_{2} \mathrm{Si}_{6} \mathrm{O}$	$\begin{aligned} & 3 \cdot 3-3 \cdot 5 \\ & 2 \cdot 4-2 \cdot 6 \end{aligned}$	$\frac{6-7}{6}$
Beryl, $\mathrm{Be}_{3} \mathrm{Al}_{2} \mathrm{Si}_{6} \mathrm{O}_{18}$	2.6-2.7	7-8	Pitchblende,* $\mathrm{U}_{3} \mathrm{O}_{8}$ with		
Bröggerite, ${ }^{*}$ a pitch-	(56-68\%	(2-8\%	oxides of Pb , and Ca ,	(mas-	
blende which contains thorium	U)	Th)	$\mathrm{Fe}, \mathrm{Bi}, \mathrm{Mn}, \mathrm{Mg}, \mathrm{Cu}, \mathrm{Si}$,	sive)	55
Calcite, Calcspar, Iceland	2.6-2.7	c. 3	1-6\% Th)		
spar, CaCO_{3}			Pyrites (iron), FeS_{2}	4.8-5.1	6-6.5
Carnallite, KCl.M	$1 \cdot 6$	1	" (copper), CuFeS_{2}	4.1-4*3	3.5-4
Carnotite, ${ }^{*}$	(c. 55	(yel-	Quartz, SiO	25	- 7
$\mathrm{K}_{2} \mathrm{O}\left(\mathrm{U}_{2} \mathrm{O}_{5}\right)_{2} \mathrm{~V}_{2} \mathrm{O}_{5} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	U)	low)	Rock salt, NaCl	2	2-2.5
Celestine, SrS	$3 \cdot 9$	3-3.5	Rutile, TiO_{2}	4.2-4.3	6-6.5
Cerussite, PbC	. 4 -3.6	3-3.5	Selenite-cryst. gypsum		
Chalcolite,* $\mathrm{Cu}\left(\mathrm{UO}_{2}\right)$		2-2.5	$\underset{\text { Spinel, } \mathrm{MgOAl}}{\text { S }}$ ($\mathrm{O}_{3} \mathrm{Si}_{2} \mathrm{O}_{9}$		$3-4$ 8
Cléveite *-pitch	(c. 60%	(c. 4%	Sylvine, KC		2
which contains	U)	Th)	Talc, $\mathrm{H}_{2} \mathrm{Mg}_{3} \mathrm{Si}_{4} \mathrm{O}$	2.5-2.8	1
Corundum, $\mathrm{Al}_{2} \mathrm{O}$	3.9-4.2	9	Thorianite,* Th, U ox-	8-9.7	7
Dolomite, CaMg	2.8-2.9	3.5-4	ides, etc. ; (4-10\% U ;		(black
Felspar, $\mathrm{Al}_{2} \mathrm{~K}_{2} \mathrm{Si}_{6} \mathrm{O}$	$2.4-2.6$		c. 60% Th) contains He		cubes)
Flint ; agate, SiO_{2}	$2 \cdot 6$	c. 6	Thorite, ${ }^{*} \mathrm{ThSiO}_{4}(\mathrm{I}-9 \%$	$4 \cdot 6$	tetra-
Fluorspar, Fluorite, CaF_{2} Galena, PbS	$3-3 \cdot 3$ $7 \cdot 4 \cdot 7$	4	Tourmaline ${ }^{\text {a }}$,		gonal)
Galena, PbS Gummite, ${ }^{\text {Pb }}$, $\dot{\mathrm{Ca}}, \dot{\mathrm{U}}$, silic	$7 \cdot 4-7 \cdot 6$	\%	Tourmaline, hydrated si-	2.9-3.3	7-7*5
Gummite, ${ }^{\text {Gypsum, } \mathrm{CaSa}, \mathrm{U} \text {, silic }}$	ate(50-	$65 \% \mathrm{U})$	licate and borate of Al,		
Gypsum, $\mathrm{CaSO}_{42} \mathrm{H}_{2} \mathrm{O}$	2	$15-2$	Na with Li or Fe or Mg		
Hæmatite, Fe	4.5-5.3	5•5-6.5	Trögerite,*	(53\%	(yel-
Hornblende, $\mathrm{Ca}, \mathrm{Mg}, \mathrm{Fe}, \mathrm{Na}, \mathrm{Al}$, silicate	2.9-3.4	5-6	$\left(\mathrm{UO}_{2}\right)_{3} \mathrm{As}_{2} \mathrm{O}_{8} 12 \mathrm{H}_{2} \mathrm{O}$	U)	low)
$\mathrm{Ca}, \mathrm{Mg}, \mathrm{Fe}, \mathrm{Na}, \mathrm{A} 1$, silicate Kainite, $\mathrm{MgSO}_{4} \mathrm{KCl}_{3} \mathrm{H}_{2} \mathrm{O}$		-	Uraninite*- crystalline pitchblende ($q . v_{0}$)	(Black	octahe- dra)
Kaolin, $\mathrm{H}_{4} \mathrm{Al}_{2} \mathrm{Si}_{2} \mathrm{O}_{9}$.	2.5	1	Uranite lime,*	3-3.2	2-2.5
Kieserite, $\mathrm{MgSO}_{4} \mathrm{H}_{2} \mathrm{O}$	2.5	3	$\mathrm{CaO}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2} 8 \mathrm{H}_{2} \mathrm{O}$		
Lepidolite (Lithia mica),	2.8-3	2.5-4	(50\% U)		
$\mathrm{F}, \mathrm{OH})_{2}(\mathrm{Li}, \mathrm{K}, \mathrm{Na})_{2} \mathrm{Al}_{2}-$			Willemite, $\mathrm{Zn}_{2} \mathrm{SiO}$	4	5
$\mathrm{Sis}_{3} \mathrm{O}_{2} \mathrm{CaCO}_{3}$			Wolfram, (Fe, Mn) WO_{4}.	7•1-7•9	5-5.5
Limestone, CaCO_{3}	2.5-2.8	-	Wollastonite, CaSiO_{3}	2.7-2.9	4.5-5
Magnesite, MgCO_{3}	c. 3	$3 \cdot 5-4 \cdot 5$	Zeunerite,* Cu, U arse-	(c. 50%	(tetra-
Magnetite, $\mathrm{Fe}_{3} \mathrm{O}_{4}$.	4.9-5.2	5.5-6.5		U)	gonal)
Meerschaum, $2 \mathrm{MgO} \cdot 3 \mathrm{SiO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	c. 2.6	2-2.5	Zircon, ${ }^{*} \mathrm{ZrSiO}_{4}$ Zincblende, ZnS	$\left\|\begin{array}{c} 4 \cdot 7 \\ 3 \cdot 9-4 \cdot 2 \end{array}\right\|$	$\begin{gathered} 7.5 \\ 3.5-4 \end{gathered}$

GRAVIMETRIC FACTORS

FACTORS FOR GRAVIMETRIC ANALYSIS

Calculated with atomic weights for 1911 (p. 1).
Example:-1 gram $\mathrm{Al}_{2} \mathrm{O}_{3}$ is chemically equivalent to 5303 gram Al , or 1 gram Al is equivalent to $1 / 5303 \mathrm{Al}_{2} \mathrm{O}_{3}$. A table of reciprocals is given on p. 136 .
(See Van Nostrand's "Chemical Annual," London.).

\begin{tabular}{|c|c|c|c|}
\hline 1 part by weight of \& is equivalent (by weight) to \& 1 part by weight of \& is equivalent (by weight) to

\hline Aluminium. \& \& Calcium (contd.)- \&

\hline $\mathrm{Al}_{2} \mathrm{O}_{3}$ \& $\checkmark 5303 \mathrm{Al}$ \& $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ \& 5422 CaO

\hline Ammonium. \& $3.350 \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ \& $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. \& 1.3935 $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{3}$

\hline $\mathrm{N} \cdot \ldots$. \& $1.216 \mathrm{NH}_{3}$ \& Carbon. \&

\hline " • • . . \& $1.288 \mathrm{NH}_{4}$ \& CO_{2} \& $4.4860 \mathrm{BaCO}_{8}$

\hline N゙ H_{3} \& ${ }_{3}^{3.819}{ }_{2}{ }^{2} \mathrm{NH}_{4} \mathrm{OH}$ \& Chlorine. \& $2 \cdot 2748 \mathrm{CaCO}_{3}$

\hline Antimony. \& \& AgCl . \& -2474 Cl

\hline Sb . . \& $1 \cdot 1997 \mathrm{Sb}_{2} \mathrm{O}_{3}$ \& $\mathrm{NaCl}^{\text {a }}$ \& -6066 Cl

\hline $\mathrm{Sb}_{2} \mathrm{O}_{3}$ \& $\mathrm{I} 3328 \mathrm{Sb}_{2} \mathrm{O}_{5}$

$1100 \mathrm{Sb}_{2} \mathrm{O}_{5}$ \& Chromium. $\mathrm{Cr}_{2} \mathrm{O}_{3}$ \& -6846

\hline $\mathrm{Sb}_{2} \mathrm{O}_{4}$ \& ${ }^{7} 7897 \mathrm{Sb}^{\text {d }}$ \& \& ${ }_{1} \cdot 3154 \mathrm{CrO}_{3}$

\hline \& $\bigcirc 9474 \mathrm{Sb}_{2} \mathrm{O}_{3}$ \& Cobalt. \&

\hline Arsenic \& $1.0526 \mathrm{Sb}_{2} \mathrm{O}_{5}$ \& Co \& 1.2713 CoO

\hline Arsenic.
$\mathrm{As}_{2} \mathrm{O}_{3}$ \& \& $\mathrm{Co}_{3} \mathrm{O}$ \& ${ }^{7} 7343 \mathrm{Co}$

\hline $\mathrm{As}_{2} \mathrm{O}_{3}$ \& $$
\begin{aligned}
& 7575 \mathrm{As} \\
& \mathrm{r} \cdot \mathrm{I} 617 \mathrm{As}_{2} \mathrm{O}_{8}
\end{aligned}
$$ \& $\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{3} \cdot\left(\mathrm{KNO}_{2}\right)_{3}$ \& -9336 CoO

\hline $\mathrm{As}_{2} \mathrm{O}_{5}$ \& $$
\begin{aligned}
& 1+1617 \mathrm{As}_{2} \mathrm{O}_{8} \\
& 652 \mathrm{I} \mathrm{As}
\end{aligned}
$$ \& $\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{3} \cdot\left(\mathrm{KNO}_{2}\right)_{3}$ \& -1306 Co

\hline $\mathrm{MgNH}_{4} \mathrm{AsO}_{4} \cdot \frac{2}{2} \mathrm{H}_{2} \mathrm{O}$ \& - 3938 As \& $\left(\mathrm{CoSOO}_{4}\right)_{2} \cdot\left(\mathrm{~K}_{2} \mathrm{SO}_{4}\right)_{3}$ \& -1416 Co

\hline " ${ }_{\text {", }}$ \& $.5199 \mathrm{As}_{2} \mathrm{O}_{3}$

$.6040 \mathrm{As}_{2} \mathrm{O}_{3}$ \& | Copper. |
| :--- |
| Cu . | \&

\hline $\mathrm{Mg}_{2} \mathrm{As}_{2} \mathrm{O}_{7}$ \& - $4827 \mathrm{As}^{\text {O }}$ \& Fluorine. \& 12517 CuO

\hline \& $.6373 \mathrm{As}_{2} \mathrm{O}_{3}$
$\cdot 7403 \mathrm{As}_{2} \mathrm{O}_{5}$ \& \& -4866 F

\hline Barium. \& $7403 \mathrm{As}_{2} \mathrm{O}_{5}$ \& Glucinum. See Beryllium. \&

\hline BaCO_{3} \& - 9960 Ba \& Gold. \&

\hline BaSO_{4}. \& ${ }^{7} 7771 \mathrm{BaO}$ \& $\mathrm{Au}^{\text {a }}$. \& $1 \cdot 5395 \mathrm{AuCl}_{3}$

\hline " \& .6570 BaO

.7255 BaO \& $$
\begin{aligned}
& \text { Hydrogen. } \\
& \mathrm{H}_{2} \mathrm{O} .
\end{aligned}
$$ \& -1il9 H

\hline Beryllium. \& $7255 \mathrm{BaO}_{2}$ \& Iodine. \&

\hline $\mathrm{BeO} \cdot$ \& -3626 Be \& AgI \& 5405

\hline Bismuth. \& \& Iron. \&

\hline Bi \& $1 \cdot 1154 \mathrm{Bi}_{2} \mathrm{O}_{3}$ \& Fe \& $1 \cdot 2865 \mathrm{FeO}$

\hline $\mathrm{Bi}_{\mathrm{BiOCl}_{3} \mathrm{O}_{3}}^{0}$ \& 8966 Bi
.8017 Bi \& " \& $1.4297 \mathrm{Fe}_{2} \mathrm{O}_{3}$
7.0218 FeSO

\hline BiOCl^{\prime}. \& $$
\begin{aligned}
& 8017 \mathrm{Bi}^{8} 8 \mathrm{Bi}_{2} \mathrm{O}_{3}
\end{aligned}
$$ \& "•• \&

\hline Boron. \& \& FeO \& 7773 Fe

\hline $\mathrm{B}_{2} \mathrm{O}_{3}$ \& -3143 B \& Fe \& $1.1113 \mathrm{Fe}_{2} \mathrm{O}_{3}$
1.4508
FeCO

\hline " . . . \& $2.7297 \mathrm{Na}_{3} \mathrm{~B}_{4} \mathrm{O}_{7} \mathrm{IOH}_{2} \mathrm{O}$ \& $\mathrm{Fe}_{2} \mathrm{O}_{3}$. \& $$
\begin{aligned}
& 1.4508 \mathrm{FeCO}_{3} \\
& \\
& .9666 \mathrm{Fe}_{3} \mathrm{O}_{4}
\end{aligned}
$$

\hline Bromine. \& \& CO_{2} \& 1.6330 FeO

\hline $\mathrm{AgBr}^{\text {a }}$. \& - 4256 Br \& - \& $2.6330 \mathrm{FeCO}_{3}$

\hline Cadmium. \& \& Lead. \&

\hline CdO \& -8754 Cd \& Pb \& 1.0773 PbO

\hline Cæsium. \& \& PbSO_{4} \& -6831 Pb

\hline $\mathrm{Cs}_{2} \mathrm{PrCl}_{6} \cdot{ }^{\text {- }}$ \& ${ }_{\text {1 }} .060 \mathrm{Cs}_{2} \mathrm{O}$ \& \& $\cdot 7358$ PbO

\hline Calcium: \& $$
\begin{aligned}
& \cdot 3945 \mathrm{Cs} \\
& \cdot 4184 \mathrm{Cs}_{2} \mathrm{O}
\end{aligned}
$$ \& " \quad. \quad. \& \[

$$
\begin{aligned}
& 7887 \mathrm{PbO}_{2} \\
& \cdot 7536 \mathrm{~Pb}_{5}
\end{aligned}
$$
\]

\hline Calcium. \& \& Lithium. \&

\hline Ca \& 1-399 CaO \& $\mathrm{Li}_{2} \mathrm{CO}_{3}$ \& - 1879 Li

\hline CaCO_{3} \& -4005 Ca \& - ${ }^{\text {P }}$ \& - $4044 \mathrm{Li}_{2} \mathrm{O}$

\hline CO_{3} \& - 5604 CaO \& $\mathrm{Li}_{3} \mathrm{PO}_{4}$ \& - 1797 Li

\hline CO_{2}. \& $2 \cdot 275 \mathrm{CaCO}_{3}$ \& " \& $\cdots 868 \mathrm{Li}_{2} \mathrm{O}$

\hline
\end{tabular}

1 part by weight of	is equivalent (by weight) to	1 part by we:ght of	is equivalent (by weight) to
Magnesium.		Potassium (contd.)	
$\mathrm{MgO}^{\text {g }}$.	${ }^{6} 6032 \mathrm{Mg}$	${ }^{\mathrm{K}_{2} \mathrm{SO}_{4} \mathrm{P}_{4} \ldots . .}$	$1.160+\mathrm{KNO}^{2}$
$\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$	- 2184 Mg - 621 MgO		-1609 K
Manganese.			2953 Rb
MnO .	${ }_{1} \cdot 1 \mathrm{HIS}^{-1203} \mathrm{Mn}_{2} \mathrm{O}_{3}$	Silicon.	
$\mathrm{Mn}_{3} \mathrm{O}_{1}$.	.7203 Mn .9307 MnO		${ }^{4} 693 \mathrm{Si}$
"	${ }_{1} 1.0350 \mathrm{Mn}_{2} \mathrm{O}_{3}$	$\xrightarrow{\text { Silver. }}$	7526 Ag
Mercury.	$11399 \mathrm{MnO}_{2}$	$\mathrm{AgBr}^{\mathrm{AgI}}$. 5744 Ag
Hg.	${ }^{1} 1.803 \mathrm{HgS}$	Sodium.	4595 Ag
HgS	. $8963 \mathrm{Hg}_{2} \mathrm{O}$	AgCl .	-4078 NaCl
Nickel.		NaHCO_{3}	- $3691 \mathrm{Na}_{2} \mathrm{O}$
Ni	$1 \cdot 2727 \mathrm{NiO}$	$\mathrm{Na}_{2} \mathrm{SO}_{4}$.	.3238 Na 4364 Na
Nitrogen.	$3.8551 \mathrm{~N}_{2} \mathrm{O}_{5}$	$\mathrm{N}_{2} \mathrm{O}_{5}$	$1.5740 \mathrm{NaNO}_{3}$
Phosphorus.	$3 \mathrm{HFS}^{-\mathrm{N}_{2} \mathrm{O}_{5}}$		
$\xrightarrow{\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}}$.$_{-2787 \mathrm{P}}^{4362}$		$\begin{aligned} & 7019 \mathrm{SrO} \\ & .564 \mathrm{SrO} \end{aligned}$
$\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. $8534 \mathrm{PO}_{4}$	Sulphur.	
Platinum.	${ }^{6} 6378 \mathrm{P}_{2} \mathrm{O}_{5}$	BaSO_{4}	$\begin{aligned} & 1460 \mathrm{H}_{2} \mathrm{~S} \\ & 1374 \mathrm{~S} \end{aligned}$
	-4015 Pt	"	${ }^{2} 2744 \mathrm{SO}_{2}$
Potassium.	-6933 PiCl_{4}		$\begin{aligned} & 3429 \mathrm{SO}_{3} \\ & 4115 \mathrm{SO}_{4} \end{aligned}$
AgCl	- 5202 KCl	Tin.	
AgBr	. 6338 KBr	SnO_{2}	${ }^{7} 881 \mathrm{Sn}$
${ }^{\mathrm{Aggln}}$ (${ }^{7} 7871 \mathrm{Kl}$	Uranium $\mathrm{U}_{3} \mathrm{O}_{8}$	
$\mathrm{KCl}_{\mathrm{KCl}}$. 5244 K	${ }_{3}{ }^{8}$. $620 \mathrm{UO}_{3}$
${ }_{\text {KBr }}$. 3285 K	UO_{2}	. 8817 U U
KOH	$1.2316 \mathrm{~K}_{2} \mathrm{CO}_{3}$	Zinc.	
$\mathrm{K}_{2} \mathrm{SO}_{1}$. $5403 \mathrm{~K}_{2} \mathrm{O}$	${ }_{\text {ZnO }}$	$\begin{aligned} 1.248 \mathrm{Zn} \\ -8033 \mathrm{Zn} \end{aligned}$

SOME BOILING-POINT MIXTURES

Boiling-points under 760 mms . of mercury. Percentage compositions by weight. A large number of minimum boiling-point mixtures are known.
(Sidney Young, "Fractional Distillation," 1903.)

	Mixture.		Boiling Points.			$\begin{aligned} & \% \text { of } \mathbf{A} \\ & \text { in mixt. } \end{aligned}$	$\begin{gathered} \text { Ob- } \\ \text { server. } \end{gathered}$
	A.	B.	A.	B.	Mixt.		
Maximum boilingpoint mixtures.	$\begin{gathered} \text { Water } \\ \text { "" } \\ \text { Me". ether } \end{gathered}$	Nitric acid Hydrochloric acid Formic acid Hydrochloric acid	$\begin{array}{\|l\|} 100^{\circ} \mathrm{C} \\ 100 \\ 100 \\ -23^{\circ} 6 \end{array}$	$\begin{gathered} 86^{\circ} \\ c .-80 \\ 100 \cdot 8 \\ c_{1}-80 \end{gathered}$	$\begin{aligned} & 125^{\circ} \\ & 110 \\ & 107 \\ & -2 \end{aligned}$	$\begin{aligned} & 32 \% \\ & 80 \\ & 23 \\ & 61 \end{aligned}$	Roscoe " Friedel
Minimum boilingpoint mixtures.	Water Pyridine Benzene Me.alcohol	Ethyl alcohol Water Methyl alcohol Acetone	$\begin{aligned} & 100 \\ & 117 \\ & 80^{2} 2 \\ & 64^{7} \end{aligned}$	$\begin{gathered} 78.3 \\ 100 \\ 647 \\ -56.5 \end{gathered}$	$\begin{aligned} & 78 \cdot 1 \\ & 92 \cdot 5 \\ & 58 \cdot 3 \\ & 55 \cdot 9 \end{aligned}$	$\begin{gathered} 44 \\ 59 \\ 60 \\ 135 \end{gathered}$	Y. \& F G. \& C. Y. \& F. Pettit

G. \& C., Goldschmidt and Constan ; Y. \& F., Young and Fortey.

THE EXPONENTIAL e^{-x}

$c=271828$. To derive e^{x} use reciprocals on p. 136. $e^{-69315}=5$.
(Based on Newman, Trans. Ciamb. Phil. Soc., 13, 1883.)

For values of x from 0000 to 0999.										
.	0	-001	002	003	-004	. 005	.006	007	008	009
-00	1.000					'9950	-9940	. 9930		
-01	990	9891	-9881	-9871	-986r	9851	9841	$\cdot 9831$	9822	'9312
-0	98	9792	. 9782	9773	.9763	-9753	9743	9734	-9724	14
. 0		-969	685	75			-9646	951		
		-9598	-9589	79		-95	9550	9541	9531	
-05	9512	9502	-9493		74	'9465	455	9446	.943	9427
-06	9418	-9408		. 9389	9380	9371	936 I	9352	9343	9333
. 07	9324	-9315	.9305	. 9296	9287		. 9268	. 9259	925	
-08	-9231	-9222	.9213	9204	${ }^{9} 9194$. 9185	9176	- 9	915	. 9148
-09	$\cdot 913$	-9130	'9121	9112	9103	9094	'908		9066	'9057

For values of x from 100 to $2 \cdot 999$.

	0	. 01	. 02	-03	.04	. 05	. 06	-07	. 08	. 09
	9048	S958.	. 8869	.878I	- 8694	8607	. 8521	8437	353	70
- 2	87	8106	. 8025	7945	. 766	7788	7711	7634		
- 3	-7408	7334.	7261.	7189.	7118	-7047	-6977	-6907	$\cdot 68$	71
	-6703		6570	. 6505	. 6440	. 6376	-6313	6250		
5	$\cdot 6065$	6005	5945	5886	-5827	5769	5712	'5655	'55	554
$\cdot 6$	5488			. 5326	5273	5220	-5169	5117	5066	
	. 4966	4916	4868	${ }_{4819}$	4771	4724	-4677	4630.	4584	38
. 8	4493	4449.	4404	4360.	-4317	4274	-4232	4190.	4148	4107
		4025	3985	-3946		3867	-3829	3791	3753	3716
1.0	3679	3642	3606	-3570	- 3535	3499	$\cdot 3465$	343	. 3396	3362
	3329	3296	.3263	$\cdot 3230$	- 3198	3166	3135	3104	-3073	-3042
	3012	2982	2952	2923	-2894	-2865	-283	2808	2780	$\cdot 2753$
3	2725	2698	2671	2645	2618	-2592	-2567	2541	2516	1
1.4	2466	2441	2417	2393	${ }^{2} 369$	2346	-2322	.2299 ${ }^{\circ}$		
$1 \cdot 5$	223	2209	2187	-2165	21	. 2122	2101	- 208	- 2060	-2039
1	2019		1979	-1959	1940	1920	19	188	-186	1845
1.	-1827	1809.	1791	${ }^{1773}$	- 1755	1738	1720	- 1703	188	1670
	-1653	1637	1622°	-1604.	-158	1572	- 1557	- 541	15	1511
	14	1481	. 1466	. 1451	143	1423	14	- 395	${ }^{1} 381$	7
2.0	-1353	1340	- 1327	${ }^{1} 13$	1300	1287	127		1249	-1237
	-1225	-1212.	1200	1188	1177	1165	1153	1142	1130	19
	- 1108	-1097	108	. 1075	-1065	1054	-1044	-1033	1023	-1013
	-1003	-09	-9883	-09	.0963	\bigcirc	-0944	-09	92	.0916
$2 \cdot 5$	-907									
			-728	-0721	- 714	0707	-0699	.0693	068	析
$2 \cdot 7$	-6672	-0665	. 0659	-0652	. 0646	0639	-6633	-0627	0620	0614
	-0608	-0602	-0596	-0540	-0584	-0578	-0573	.0567	0561	0556
$2 \cdot 9$	-0550	0545	${ }^{5} 39{ }^{\circ}$	0534.	-052	-523	-0518	51	. 0508	03

Subtract							Differences.	
$\mathbf{0 0 0 1}$	$\mathbf{2}$	3	$\mathbf{4}$	5	6	7	8	9
$\mathbf{1}$	2	3	4	5	6	7	8	9
$\mathbf{1}$	2	3	4	5	6	7	8	9
$\mathbf{1}$	2	3	4	5	6	7	8	9
$\mathbf{1}$	2	3	4	5	6	7	8	9
$\mathbf{1}$	2	3	4	5	6	7	8	9
$\mathbf{1}$	2	3	4	5	6	7	8	9
$\mathbf{1}$	2	3	4	5	6	7	8	9
$\mathbf{1}$	2	3	4	5	6	7	8	8
$\mathbf{1}$	2	3	4	5	6	7	7	8
$\mathbf{1}$	2	3	4	5	6	6	7	8

Subtract Differences.

001	2		4	5	6		78	89
9	172	26	34	43	52		6069	6977
S	162	23	31	39	47	55	5562	6270
7		21	28	35	42		4956	5663
6	131	19	26	32	38	45	4551	5157
6	121	17	23	29	35		4046	4652
5	101	16	21	26	31	37	3742	4247
5	91	14	19	24	28	33	333^{8}	3843
4	91	13	17	2 I	26	30	3034	3438
4	81	12	15	19	23	27	2731	31 35
4		11	14	18	21	25	2528	28. 32
3	6		13	16	19	22	2225	2529
3	6	9	11	14	17		223	2326
3	5	8	10	13	16		1821	212
2	5	7	9	12	14	10	1619	1921
2		6	8	11	13	15	1517	1719
2			8	10	12		1315	1517
2	3	5	7		10		1214	1416
2	3	5	6	8	9		1113	1314
1		4	6	7			10 II	1113
I	3	4	5	6	8		910	10
1	2	4	5	6	7			1
I	2	3	4	5			7	9
I	2	3	4	5	6		7	89
1	2	3	3	4	5			
1		2	3	4	5		56	67
1	1	2	3		4		56	6
I	1	2	3	3	4		4	56
1	1	2	2	3	3		4	5
I	1	2		3	3		44	45

x	0	$\cdot 1$	'2	- 3	4	-5	$\cdot 6$	$\cdot 7$	- 8	$\cdot 9$	
3	-0498	-0450	. 0408	. $0368{ }^{\circ}$	0334	-0302	-273	. 2447	. 0224	. 0202	
4	-0183	-0166	. 0150	${ }^{\circ} \mathrm{O} 36{ }^{\circ}$. 0123	OIII	Oror	.0091.	.0082	-0074	Mean differences no longer sufficiently accurate.
5 5	. 0067	${ }^{-0061}$.0055	${ }^{\circ} \mathrm{O} 0050$.0045	.0041	-0037		.0030	.0027	
7	-0009	-0008	. 000	. 0007	. 0006	-0006	. 0005	. 0005.	. 0004	.0004	
8	-0003	-0003	.0003	.0002	. 0002	-0002	-0002	.0002 ${ }^{\circ}$. 0002	'0001	

FOUR-FIGURE LOGARITHMS

FOUR-FIGURE LOGARITHMS

	0	1	2	3	4	5	6	7	8	9		23	34	5		67	7	8	9
50	6990	6998	7007	7016	7024	7033	042	7050	7059	7067	1	23	33	3	45	5	6	7	8
51 52	7076 7160	7084 7168	7093	7101	7110	7118	7126	7135	7143	7152		23	$3{ }^{3} 3$	3			6	7	8
53	7172	71	7177	7185	7193	7202	7210	7218		7235		12	23	4			6		7
54	$7{ }^{724}$	7251 7332	7259	73848	7375	7284 7364	7292	7300	7308	7316 7396		2 2 2	2 2 2	4	4	5	6	6	7
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474		22	3	3		5	5	6	7
56	7482	74	7497	7505	7513	7520	7528	7536	7543	7551		22	23			5		6	
57	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627		22	2.3	3		5		6	7
58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701		1	2	3		4			7
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774		12	23	3	4	4		6	7
60	7782	7789	7796	$7 \mathrm{SO}_{3}$	78 זо	7818	7825	7832	7839	7846		1	23	3	4		5	6	6
61	7853	7860	7868	7875	7882	7889	7896	7903	7910	7917		$1{ }^{1} 2$	2			4			
62	7924	7931 8000	7938	7945 8015	7952	7959	7966 8035 8	7973	7980	7987		1	23			+			
64	7993 8062 8	8000 8069	So07 So75	8014 8082	So21	8028	8035 8102	8041	8048 8116	8055 8122		1	2	3		4	5	5	6
65	8129	8136	8142	S149	8156	8162	S169	8176	8182	8189		11	23	3	3	4		5	6
67		8202	8209	8215	8	8228	8235	8241	S2,48	8254		1.1	23	3	3	4			
68	8325	833 I	8338	8344	${ }^{8281}$	${ }^{8293}$	8299 836	8370	8312	8382		1	2 2 2	3	3	4	4		6
69	83	S395	8401	8407	8414	8420	8426	8432	8439	8445		11	22		3	4	4		6
70	8	8457	8463	8470	8476	8482	$\mathrm{S}_{4} 88$	8494	8500	8506		11	22	2	3	4		5	6
72	$\left\|\begin{array}{l} 8513 \\ 8573 \end{array}\right\|$	$\begin{aligned} & 8519 \\ & 8579 \end{aligned}$	$\begin{aligned} & 8525 \\ & 8585 \end{aligned}$	$\begin{aligned} & 853 \mathrm{I} \\ & 8591 \end{aligned}$	$\left\|\begin{array}{l} 8537 \\ 8597 \end{array}\right\|$	$\left\|\begin{array}{l} 8543 \\ 8603 \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 8549 \\ & 8609 \end{aligned}\right.$	$\begin{aligned} & 8555 \\ & 8615 \end{aligned}$	$\begin{aligned} & 8561 \\ & 8621 \end{aligned}$	$\left.\begin{aligned} & 8567 \\ & 8627 \end{aligned} \right\rvert\,$		$\begin{array}{lll} 1 & 1 \\ 1 & 1 \end{array}$	2	$\begin{aligned} & 2 \\ & 2 \end{aligned}$		$\begin{aligned} & 4 \\ & 4 \end{aligned}$		5	
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686		1	22	2	3	4			
7	8692	S698	8704	8710	8716	8722	8727	8733	8739	8745		1	22	23		4	4		5
75	8751	8756	S762	8768	S774	S779	8785	8791	8797	8802		1	22	23	3	3	4	5	5
76	88	8814	S820	8825	8831	${ }^{88} 37$	8842	8848	8854	8859		1	2			3			
77	8865	8871	8876		8887	8893	8899	8904	8910	8915		1	2						
78	S921	8927	8932	8938	8943	8949	8954	8960	8965	8971		1	2	2	3	3			
				S993		9004	9009	9015	9020										
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079		1			3	3			5
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133		1	. 22			3			
82	${ }_{9}{ }^{1} 38$	9143	9149	9154	9159	9165	9170	9175	9180	9186		1							
8	9191 9243	9196	9201	92208	9212 9263	9217 9269	${ }_{9} 9222$	9227 9279	9232 9284	$\begin{aligned} & 9238 \\ & 9289 \end{aligned}$		$\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}$	2	2	3		4		5 5
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340		1	2	2	3	3	4		- 5
86	$\left.\begin{aligned} & 9345 \\ & 9395 \end{aligned} \right\rvert\,$	$\begin{aligned} & 9350 \\ & 9400 \end{aligned}$	$\begin{aligned} & 9355 \\ & 9405 \end{aligned}$	$\begin{aligned} & 9360 \\ & 9410 \end{aligned}$	$\left.\begin{aligned} & 9365 \\ & 9415 \end{aligned} \right\rvert\,$	$\left\|\begin{array}{c} 9370 \\ 9420 \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 9375 \\ & 9425 \end{aligned}\right.$	$\begin{aligned} & 9380 \\ & 9430 \end{aligned}$	$\begin{aligned} & 9385 \\ & 9435 \end{aligned}$	$\begin{aligned} & 9390 \\ & 9440 \end{aligned}$		$\begin{array}{ll} 1 & 1 \\ 0 & 1 \end{array}$	2			3			5 4 4
88	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489		-	1	2	2	3	3		4
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9533^{8}		0 I	1			3	3		4
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586		-	1			3	3	4	4
9		9595	9600	9605	9609	9614	9619	9624	9628	9633		-	1		2				
9		9643	9647	9652	9657	9661	9666	9671	9675	9680		-	1	2	2		3		4
93	9685	9689	9694	9699	9703	9708	9713	9717	9722	9727		- 1	1						4
94	9731	9736	9741	9745	9750	97	9759	9763	9768	9773		-	1						4
95	9777	9782	9786	9791	9795	9800	9 SO 5	9809	9814	9818		-	1		2		3		4
		9827	9832	9836	9841			9854	49859	98		101	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		2		3 3		4 4
9	9912	9872	9877	9882	9930	9890	9939	9943	9948	9952		0 -	1		2		3		4
99	9956	9961	9965	9969	9974	9978	9983	9987	9991	I 9996		- I	1	2	2	3	3		4
	0	1	2	3	4	5	6	7	8	9		12	3	4	5	6	7	8	9

ANTILOGARITHMS

	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
- 00	1000	1002	10	10	1009	1012	1014	1016	1019	102I	-			1	1	1	2	2	2
-01	1023	1026	1028	1030	1033	1035	1038	1040	1042	1045	o			1	I	I	2	2	2
-02	1047	1050	1052	1054	1057	1059	1062	1064	1067	1069	-	0	1	1	1	I	2	2	2
-03	1072	1074	1076	1079	1081	1084	1086	1089	1091	1094	-	-	1	1	1		2	2	2
$\cdot 04$	1096	1099	1102	1104	1107	1109	1112	III4	1117	III9	-			1	I	2	2	2	2
. 05	1122	1125	1127	1130	1132	II35	1138	1140	1143	1146	O			1	1		2	2	2
-06	1148	1151	1153	1156	1559	1161	1164	1167	1169	1172	-	1	1	1	I	2	2	2	2
-07	1175	1178	1180	1183	II86	1189	1191	1194	1197	1199	-			1	1	2	2	2	2
-08	1202	1205	1208	1211	1213	1216	1219	1222	1225	1227	-		I	1	I		2	2	3
09	1230	1233	1236	1239	1242	1245	1247	1250	1253	1256	0	1		1	1	2	2	2	3
-10	1259	1262	1265	1268	1271	1274	1276	$12 \% 9$	1282	1285	O			1	1	2	2	2	3
$\cdot 11$	1288	1291	1294	1297	1300	1303	1306	1309	1312	1315	0	1	1	1	2	2	2	2	3
2	1318	1321	1324	1327	1330	I 334	1337	1340	1343	1346	-	1		1	2	2	2	2	3
13	I 349	1352	I 355	1358	1361	I 365	1368	1371	1374	1377	\bigcirc	1	I	1	2	2	2	3	3
$\cdot 14$	1380	1384	1387	1390	1393	I 396	1400	1403	1406	1409	-			1	2	2	2	3	3
-15	1413	1416	1419	1422	1426	1429	1432	1435	1439	1442	-			1	2	2	2	3	3
$\cdot 16$	1445	1449	1452	1455	1459	1462	1466	1469	1472	1476	O			1	2	2	2	3	3
-17	1479	1483	1486	1489	1493	1496	1500	1503	1507	1510	-			1	2	2	2	3	3
-18	1514	1517	1521	1524	1528	1531	I535	1538	1542	I545	-	1		1	2	2	2	3	3
-19	1549	1552	1556	1560	1563	I567	1570	1574	1578	1581	\bigcirc			1	2	2	3	3	3
- 20	15	1589	1592	1596	1600	1603	1607	1611	1614	1618	-			I	2	2	3	3	3
- 21	1622	1626	1629	1633	1637	1641	1644	1648	1652	1656	O			2	2	2	3	3	3
$\cdot 2$	1660	1663	1667	1671	1675	1679	1683	1687	1690	1694	-	1	I	2	2	2	3	3	3
-2	1698	1702	1706	1710	1714	1718	1722	1726	1730	1734	-			2	2	2	3	3	4
-24	1738	1742	1746	1750	1754	1758	1762	1766	1770	1774	\bigcirc			2	2	2	3	3	4
-25	1778	1782	1786	1791	1795	1799	1803	1807	18 I 1	1816	-			2	2	2	3	3	4
- 26	1820	1824	1828	1832	1837	184 I	1845	1849	1854	1858	\bigcirc			2	2	3	3	3	4
-27	1862	1866	1871	1875	1879	1884	I888	1892	1897	1901	-	1		2	2	3	3	3	4
- 28	1905	1910	1914	1919	1923	1928	1932	1936	1941	1945	-			2	2	3	3	4	4
-29	1950	1954	1959	1963	1968	1972	1977	1982	1986	1991	\bigcirc	1	1	2	2	3	3	4	4
-30	1995	2000	2004	2009	2014	2018	2023	2028	2032	2037	-			2	2	3	3	4	4
-31	2042	2046	2051	2056	2061	2065	2070	2075	2080	2084	-			2	2	3	3	4	4
-32	2089	2094	2099	2104	2109	2113	2118	2123	2128	2133	-	1		2	2	3	3	4	4
33	2138	2143	2148	2153	2158	2163	2168	2173	2178	2183	0			2	2			4	4
$\cdot 34$	2188	2193	2198	2203	2208	2213	2218	2223	2228	2234	I	1	2	2	3	3	4	4	5
-35	22	22	22	22	22	22	2270	2275	2280	2286	1			2	3	3	4	4	5
$\cdot 36$	2291	2296	2301	2307	2312	2317	2323	2328	2333	2339	1			2	3	3	4	4	5
$\cdot 37$	2344	2350	2355	2360	2366	2371	2377	2382	2388	2393	I	1	2	2	3	3	4	4	5
-38	2399	2404	2410	2415	2421	2427	2432	2438	2443	2449	I			2	3		4		5
-39	$2+55$	2460	2466	2472	2477	2483	2489	2495	2500	2506	1			2	3	3	4	5	5
-40	25	2518	2523	2529	2535	25	2547	2553	2559	2564	1			2	3	4	4	5	5
41	2570	2576	2582	2588	2594	2600	2606	2612	2618	2624	1			2	3	4	4	5	5
-42	2630	2636	2642	2649	2655	2661	2667	2673	2679	2685	1			2	3	4	4	5	6
-43	2692	2698	2704	2710	2716	2723	2729	2735	2742	2748	I			3	3	4	4	5	6
-44	2954	2761	2767	2773	2780	2786	2793	2799	2805	2812	1	1	2	3	3	4	4	5	6
-45	2818	2825	2831	2838	2844	2851	2858	2864	2871	2877	I			3	3	4	5	5	6
$\cdot 46$	2884	2891	2897	2904	2911	2917	2924	2931	2938	2944	I			3	3	40	5	5	6
-	2951	2958	2965	2972	2979	2985	2992	2999	3006	3013	I		2	3	3	4	5	5	6
-48	3020	3027	3034	3041	3048	3055	3062	3069	3076	3083	I		2	3	4	4	5	6	6
49	3090	3097	3105	3112	3119	3126	3133	3141	3148	3155	1	1	2	3	4	4	5	6	6
	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9

ANTILOGARITHMS

	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5		67		89
- 50	3162	3170	3177	3184	3192	3199	3206	3214	3221	3228	1	1	2	3	4			56	7
. 51	3236	3243	3251	3258	3266	3273	3281	3289 3365	3296	3304	1	2	2	3				5	7
$\cdot 53$	3311 3388	3319	3327	3334	3342	3350	3357	3365	3373	338 r	1	17	2	3			5		67
- 54	33467	33975	3404	3412 3491	3499	3508	3516	3443	3451	3459	1	2	2	3 3					$\begin{array}{ll}6 & 7 \\ 6 & 7\end{array}$
- 55	3548	3556	3565	3573	3581	3589	3597	3606	3614	3622		2	2	3			5	67	7
- 56	3631	3639	3648	3656	3664	3673	3681	3690	3698	3707	1		3						78
.57	3715	3724	3733	3741	3750	3758	3767	3776	3784	3793	I	5	3	3				6	78
- 59	3890	3811 3899	3		3837 3926	3846	3855	3864 3954	3873	3882	1	2	3	4				6	78 7 8
- 60	398 r	3990	3999	4009	4018	4027	4036	4046	4055	4064		2	3	4			66		S
- 61	4074	4083	4093	4102	4111	41	4130	4140	4150	459		${ }^{\text {a }}$	3						9
-62	4169	4178	4188	4198	4207	4217	4227	4236	4246	4256	1		3						9
-63	4266	4276	4285	4295	4305	4315	4325	4335	4345	4355	1	2	3				6		9
-64	4365	4375	4385	4395	4406	4416	4426	4436	4446	44		2	3	4	5		67		9
-65	4467	4477	4487	4498	4508	4519	4529	4539	4550	4560		2	3	4					9
-66	4571	4581	4592	4603	4613	4624	4634	4645	4656	4667		2	3	4					10
-67	467	4688	4699	4710	4721	4732	4742	4753	4764	4775	1	2	3	4					10
-68	478	4797	4808	4819	4831	4842	4853	4864	4875	4887	1		3	4					9 10
. 69	4898	4909	4920	4932	4943	4955	4966	4977	4989	5000			3				7	8	910
-70	5012	5023	5035	5047	5058	5070	5082	5093	5 O 5	5117		2	4	5				89	I
. 7	5129 5248	514	5152	5164	5176	5	5200	5212	5224	5236	1	2	4	5	6			810	11
.72	5248 5370	5260 5383	5272	5284	5297 5420	5309 5433	5321	5333	5346	5358 5483			4					10	lo II
-74	5495	550	5521	5534	5546	5559	5572	5585	5598	561		3	4	5			S	910	12
-75	5623	5636	5649	5662	5675	5689	5702	5715	5728	5741		3	4	5	7		8	91	12
-76	5754	57	5781	5794	58	5821	5834	5848	${ }_{5}^{5861}$	5875 6012			4		7				1112
-77	5026		5916	5929		5957 6095	5970 6109		${ }_{6138}^{5998}$	6012 6152	1		4	5			${ }_{8}^{8} 10$	1 1	(1)
-79	6166	6180	6194	6209	6223	6237	6252	6266	6281	6295		3	4				910		113
- 80	631	6324	6339	6353	6368	6383	6397	6412	6427	6442		3	4	6	7		910	12	213
- 81	64	6471	6486	6501		6531	6546	6561	6577	6592	2		5	6	8		911	112	14
. 82		6622 6776	6637 6792	6653	$\begin{aligned} & 6568 \\ & 6823 \end{aligned}$	$\left\|\begin{array}{l} 6683 \\ 6839 \end{array}\right\|$	6699	$\begin{aligned} & 6714 \\ & 6871 \end{aligned}$	6730 6887	6745 6902			5						
-84	6918	6934	6950	6966	6982	6998	7015	7031	7047	7063	2	3	5	6	8		\% 11		315
- 85	7079	7096	7112	7129	7145	61	7178	7194	7211	722		3	5	7	8		10 12	13	315
-86	7244	7261	7278	7295	7311	7328	7345	7362	7379	$\left.\begin{aligned} & 7396 \\ & 7568 \end{aligned} \right\rvert\,$			5	7	8		10 12		$\begin{array}{lll}3 & 15 \\ 4 & 16\end{array}$
. 88	7586	7403	7447	746	7456	7499	7591	7709	75	7745	2				9		${ }_{11} 12$	1	416
-89	7762	7780	7798	7816	7834	7852	7870	7889	7907	7925		4	5	7	9		1113	11	410
-90	7943	7962	7980	7998	80	8035	8054	8072	8091	8110	2	4	6	7	9				
. 91	8128	8147	8166	8185	S204	8222	8241	8260	8279	8299			6		9		1		
.92	8318 8511	8337 8531	8356 8551	8375	8395 8590	8414	8433	8453 8650	8472 8670	8492 8690	12	4	6	8	10		1212	16	$\begin{array}{ll}517 \\ 6 & 18\end{array}$
-94	8710	8730	8750	8770	8790	8810	8831	8851	8872	8892		4	6	8	10				6 IS
-95	8913	8933	8954	8974	8995	9016	9036	9057	9078	9099		4	6	8	10		215	517	719
-96	9120	9141	9162	9183	9204	9226	9247	9268	9290	9311	2				11				
$\cdot 97$	9333	9354	9376	9397	9419	$9+41$	9462	9484	9506	9528		4	7		11			1517	
-98	9550	9572	9594	9616	9638	9661	9633	9703	9727	9750		4	7		${ }^{11}$				
$\cdot 99$	9772	9795	9817	9840	9863	9886	9908	993 r	9954	9977		5							
	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5		6	8	89

FIVE-FIGURE LOGARITHMS

FIVE-FIGURE LOGARITHMS

136

RECIPROCALS

	0	1	2	3	4	5	6	7	8	9	Subtract Differences.							
												2	3	5	6	7	8	9
10	1000	9901	9804	9709	9615	9524	9434	9346	9259	9174	Mean differences not sufficiently accurate.							
11	9091	9009	8929	8850	8772	8696	8621	8547	8475	8403								
12	8333	8264	8197	8130	8065	8000	7937	7874	7813	7752								
13	7692	7634	7576	7519	7463	7407 6899	7353 6849	7299 6803	7246	7194 6711								
15	6667	6623	6579	6536	6494	6452	6410	6369	6329	6289	4		17	1		5		
	6250	6211	6173	6135	6098	6061	6024	5988	5952	5917								
17	5882	5848	5814	5780	5747	5714	$\left\lvert\, \begin{aligned} & 5682 \\ & 50 \end{aligned}\right.$	5650	5618	3557			1013		20	023		
18	$\begin{aligned} & 5556 \\ & 5263 \end{aligned}$	5525	5495	5464	5435 5155	5	${ }_{5}^{5376}$	5348 5076	5319 5051	5291 5025	3		- $\begin{aligned} & 9 \\ & 8 \\ & 811\end{aligned}$			120		26
	$\|5263\|$			5181	5155		5102	5076	5051	5025	3					6		
20	5000	4975	4950	4926	4902	4878	4854	4831	4808	4785	2	5	7	2		4	19	1
2	4762	4739	4717	4695	4673	4651	4630	4608	4587	4566	2					15		
22	4545	4525	4505	4484	4464	4444	4425	4405	4386	4367	2	4						
23	4348 4167	4329 4149	4313	4292	4274	4255 4082	4237 4065	4219	4202	4184	2	4	5			113	14	
24	4167	4149	4132	4115	4098	4082	4065	4049	4032	4016		3	5			12		15
25	4000	3984	3968	3953	3937	3922	3906	3891	3876	3861	2	3	5	8	9	9	12	4
26	3846	3831	3817	3802	3788	3774	3759	3745	3731	3717	1			7				
27	3704	3690	3676	3663	3650	3636	3623	3610	3597	3584	1							
28	3571	3559	3546	3534	3521	3509	3497	348.4	3472	3460			4				10	11
29	3448	3436	3425	3413	3401	3390	3378	3367	3356	3344	1	2	35					
30	3333	3322	33 II	3300	3289	3279	3268	3257	3247	3236	1	2	3	5	6	6	9	\bigcirc
3	3226	3215	3205	3195	3185	3175	3165	3155	3145	3135	1	2						
32	3125	3115	3106	3096	3086	3077	3067	3058	3049	3040		2	3	5	5			
	3030	3021	3012	3003	2994	2985	2976	2967	2959	2950	1	2	3				7	
34.	2941	2933	2924	2915	2907	2899	2890	2882	2874	2865	1	2	3		5		7	8
35	2857	2849	2841	2833	2825	2817	2809	2801	2793	2786	1	2	23	4	5	56	6	7
36	2778	2770	2762	2755	2747	2740	2732	2725	2717	2710	I	2						
37 38	2703 2632	2695	2688	2681 2611	2674 2604	2667	2660 2591	2653	$\begin{aligned} & 2646 \\ & 2677 \end{aligned}$	2639	1	1	2		4 4 4			
39	2632 2564	2625	2618	2511	2604	2597 2532	2591	2584 2519	2577	2571 2506	I	1	2 2 2	3	4	4	5	
40		249	2488	24^{81}	2475	2469	2463	2457	2451	2445	1	1	22	3	4	4	5	
	2439	2433	2427	2421	2415	2410	2404	2398	2392	2387	1	1	2					
42	2381	2375	2370	2364	2358	2353	2347	2342	2336	233 I	I	1	2		,		4	
4	2326	2320	2315	2309	2304	2299	2294	2288	2283	2278	I	1	22	3	3		4	
44	2273	2268	2262	2257	2252	2247	2242	2237	2232	2227	1	1	22		3			
45	2222	2217	2212	8	3	21	2193	2188	2183	2179	-	1	12	2	3	3		
46	2174	2169	2165	2160	2155	2151	2146	2141	2137	2132	-	1	1	2	3			
47	2128	2123	2119	2114	2110	2105	2101	2096	2092	2088	-	1	1					4
48	2083	2079	2075	2070	2066	2062	2058	2053	2049	2045	-	1	1				3	
49	2041	2037	2033	2028	2024	2020	2016	2012	2008	2004		1	1				3	
50		1996	19	19	19	1980	1976	1972	1969	1965	-	1	12	2	2			4
	196	1957	1953	1949	1946	1942	1938	1934	1931		-	1	1	2				
52	1923		1916	1912	1908	1905	1901	$\begin{gathered} 1898 \\ \hline \end{gathered}$	1894	1890	-		1		2		3	3
54	1887 185	188	1880	1876	18	18	1866	1862	1859	1855	-	1	1		2	2		
						185	18		18								3	
	0	1	2	3	4	5	6	7	8	9	$\frac{1234}{\text { Subtract }}$					6	89	
															Differ	renc		

RECIPROCALS

	0	1	2	3	4	5	6	7	8	9	Subtract Differences.								
											1	2	3		5	16		8	9
55	1818	1815	1812	1808	1805	1802	1799 I	17951	17921	1789	-	1	1	12	2	2	2	3	3
56	1786	1783	1779	1776	1773	1770	1767	1764	1761	1757	-	1	1	1	2	2		3	3
57	1754	1751	1748	1745	1742	17391	1736	1733	17301	1727		1	1	1	2	2		2	
58 59	$\left\|\begin{array}{l} 1724 \\ 1605 \end{array}\right\|$	1721	1718	1715 I	1712	${ }_{1709}^{1789}$	17061	$1704{ }^{1675}$	17011	1698	-	1	I			2	2	2	3
60	1667	1664	1661	1658	1656	1653	16501	16471	16451	1642	o	1	1		1	2	2	2	3
61	1639	1637	1634	1631	1629	1626	16231	1621	16181	1616	-	1	1		I	2	2	2	2
62	1613	1610	1608	1605	1603	1600	15971	1595	1592	1590	-	1	1	1	1	2	2	2	2
63	1587	1585	1582	1580	1577	1575	1572 I	1570 I	15671	1565	-	0	1	1	1	1	2	2	2
64	1563	1560	1558	1555	1553	1550	1548 I	1546	15431	1541	-	0	1	1	1	1	2	2	2
65	1538	1536	1534	1531	1529	1527	1524	1522	15201	1517	-	0			1	1	2	2	2
66	1515	1513	1511	1508	1506	1504	15021	1499	1497	1495		-	1		1	1	2	2	2
67	1493	1490	1488	1486	1484	148	14791	1477	1475	1473		-	1		I	1	2	2	2
68	1471	1468	1466	1464	1462	1460	1458	1456	1453	1451	-	-	1		1	1		2	2
69	1449	1447	1445	1443	1441	1439	1437 I	1435	14331	1431	-	-	1		1	1	1	2	2
70	29	1427	1425	1422	1420	1418	1416	1414	1412	1410	0	0			1	1	1		2
71	1408	1406	1404	1403	1401	1399	13971	1395	13931	1391		,	1		1		1		2
72	1389	1387	1385	1383	1381	1379	1377	1376	1374	1372	-	\bigcirc	1		1	1	1		2
73	${ }^{1} 370$	1368	1366	1364	1362	1361	1359	1357	1355	1353		0	1	1	1	1	1		2
74	1351	I 350	1348	1346	1344	1342	13401	1339	1337	1335	0	0	1	1	1	1	1	1	2
75	1333	1332	1330	1328	1326	1325	1323	1321	1319	1318	-	0	1	1	1	1	1		2
76	1316	1314	1312	1311	1309	1307	13051	1304	1302	1300	-	0	1	1	1	1			2
77	1299	1297	1295	1294	1292	1290	12891	1287	1285	1284		o	0		1	1			1
78	1282	1280 1264	1279 1263	1277 1261	1276	$1 \begin{aligned} & 1274 \\ & 1258\end{aligned}$	1272 1256	1271	1269	1267	\bigcirc	-	0	1	1	1	1	1	1
80	1250	1248	1247	1245	1244	1242	1241	1239	1238	1236	-	-	0	1	1	1	1	1	1
81	1235	1233	1232	1230	1229	1227	1225	1224	1222	1221			0		1	1	1		
82	1220	1218	1217	1215	1214	1212	1211	1209	1208	1206		0	0	1	1	1	1		1.
83	1205	1203	1202	1200	1199	1198	1196	1195	1193	1192	-	0	0	1	1		1		1
84	1190	1189	1188	1186	1185	1183	1182	1181	1179	1178	o	-	0	1	1	1	1		1
85	1176	1175	1174	1172	1178	1170	1168	1167	1166	1164	-	0	0	1	1	1	1	1	1
86	1163	1161	1160	1159	1157	1156	1155	1153	1152	1151		-	0		1	1	1		1
87	1149	1148	1147	1145	1144	1143	1142	1140	1139	1138	-	-	0	1	1	1	1		1
8	1136	Ir 35	1134	1133	1131	I130	1129	1127	1126	1125		0	0	1		1	1		1
89	1124	1122	1121	1120	1119	1117	ris 6	1115	1114	III2		- 0	-	- 1	1	I	1		1
90	IIII	1110	1109	1107	06	1105	1104	1103	1101	1100	0	0	-		1	1	1		1
91	rog9	1098	1096	1095	1094	1093	rog2	1091	1089	1088	-	-	-	0	1	1	1		1
92	1087	1086	1085	1083	1082	1081	1080	1079	1078	1076	-	0	0	-	1	1	1		1
94	1075	1074	1073	1072	1071	1070	1068	1067	1066	1065		0	0	0		1	1		1
94	1064	1063	1062	1060	1059	1058	1057	1056	1055	1054		- 0	0	- 0		1	1		1
95	1053	1052	10	1049	1048	47	1046	1045	1044	43		-	-	,	I	1	11		1
	1042	1041	1040	1038	1037	1036	1035	1034	1033	1032		0	0						1
97	1031	1230	1029	1028	1027	1202	1025	1024	1022	1021		0	0	0	1	1			11
98	1024 1010	1019 1009	1018 1008	1017	$1 \begin{aligned} & 1086 \\ & 1006\end{aligned}$	$1 \begin{aligned} & 1015 \\ & 1005\end{aligned}$	1	1013 1003	(1012	1011 1001		0	0	0	${ }_{0}^{1}$	I	$\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}$		$\begin{array}{lll}1 & 1 \\ 1 & 1\end{array}$
											1	12	23	34	45	56	6	8	9
	0	1	2	3				7					Subtr	tract	t	Diffe	eren	,	

	0	1	2	3	4	5	6	7	8	9					5	6	78	89
$5 \cdot 5$	$30 \cdot 25$	$30 \cdot 363$	30.4730	30.583	30.69	30.80	$0 \cdot 91$			5		2	3		6		8	9 10
$5 \cdot 6$	31.36	$31^{1+47} 3$	$31^{\circ} 58$	31703	$3 \mathrm{I} \cdot \mathrm{S}_{1}$	31 ${ }^{\circ} 9$	32.04 3	$32 \cdot 15$		32.38	1	2				7	S	
$5 \cdot 7$	32.49	$32 \cdot 603$	$32^{\prime} 72$	$32 \cdot 83$	32.95	$33^{\circ} \mathrm{O} / 2$	$33 \cdot 18$	33.293	33.413	$33^{\circ} 52$	1	2				7	8	910
$5 \cdot 8$	$33^{\circ} 64$	33.76	33.87 3.	$33: 923$	34.11	34.22	34.343	34.46	34.573	34.69		2			6	7	¢	9 II
$5 \cdot 9$	34.81	$34^{\circ} 933$	335.0535	$35 \cdot 163$	$35 \cdot 28$	$35^{\circ} 40$	35.523	$35 \cdot 643$	$35^{\circ} 76$	$35 \cdot 88$	1	2	4		6	7	81	1011
6.0	$36 \cdot 00$	$36 \cdot 12$	3		36.48	$36 \cdot 60$	$36 \cdot 723$		$36 \cdot 973$	$37^{\circ} 09$		2	4				S 1	1011
6.1	37.21	37.333	37.45	37.58	37.70	37.82	37.95	38073	$38 \cdot 193$	$38 \cdot 32$	I	2	4				9	
6.2	38.44		38.693°	$3 \mathrm{~S} \cdot \mathrm{Cr} 3$	$35^{\circ} 94$	$39^{\circ} 06$	39'193	39.313	39.44		1	3	4		6	S	91	IO II
$6 \cdot 3$	$39^{\circ} 69$	39823	$239^{\circ} 944$	$40^{\circ} 074$	4020	$40^{\circ} 32$	40.454	540.58	40.7040	$40 \cdot 83$			4			8	91	1011
6.4	40×96	$41^{\circ} 094$	$941 \cdot 2241$	$41 \cdot 3441$	$41 \cdot 47$	$4 r^{*} 60$	41.734	$341 \cdot 8641$	$41 \cdot 9942$	$42 \cdot 12$		3				8	91	1012
$6 \cdot 5$	$42 \cdot 25$	42:384	42.514	42.644	$42^{\prime} 77$	$42^{\prime} 90$	$43^{\circ} 034$	$43^{\prime} 16$	$43 \cdot 304$	$43^{\circ} 43$	1	3	4	5	7	8	9.1	1012
6.6	$43 \cdot 56$	$43 \cdot 69$	$43 \cdot 82$		$44^{\circ} 09$	$44^{.22}$	$44 \cdot 36$				1		4		7	8	91	1112
${ }^{6 \cdot 7}$	44.89	$45^{\circ} 0^{2} 4$	$45^{\circ} 1645$	$45^{\circ} 29$	45.43	45656	45704	45.834	45.974	$46^{\circ} 10$	1	3	4		7	8	91	1112
6.8	$4{ }^{4} \cdot 24$	$46 \cdot 384$	846.514	$46 \cdot 65$	$46^{\circ} 79$	$46 \cdot 92$	47.06		47.33	$347.47 \mid$							101	$\begin{array}{ll}11 & 12 \\ \text { He }\end{array}$
$6 \cdot 9$	$47^{\circ} 61$	47.754	$547 \cdot 894$	48.024	$48^{\prime} 16$	$48 \cdot 30$	48.44		$48 \cdot 724$			3					101	1113
$7 \cdot 0$	$49^{\circ} 00$	$49^{\circ} 144$	4	$49^{*} 424$	$49^{\circ} 56$	49'70	$49 \cdot 844$				1	3	4	6	7	81	101	II_{13}
$7 \cdot 1$	$50 \cdot 41$	50.55 5	$50 \cdot 695$	$50 \cdot 845$	50.98	51-12	51.275	51415	51.555	5170	1	3	4		7	9	101	
$7 \cdot 2$	51.84	51.985	$52 \cdot 135$	$52 \cdot 275$	52.42	$52 \cdot 56$	52.715	52.85 5	$53 \cdot 00$	$53 \cdot 14$	I	3	4	6			10	1213
$7 \cdot 3$	53.29	$53 \cdot 445$	53.58 5	53.735	$53 \cdot 88$	$54{ }^{\circ} \mathrm{O} 2$	$54 \cdot 175$	51-32 5	54.465	$54^{\circ} 61$	-	3	4		7	91	10	1213
$7 \cdot 4$	54.76	54.915	55.065	$55^{\circ 20} 5$	55.35	$55^{\circ} 50$	$55 \cdot 655$	$55^{\circ 80} 5$	$55 \cdot 955$	56^{10}	1	3	4		7	91	101	1213
$7 \cdot 5$	$56 \cdot 25$		5		$56 \cdot 85$	57\%00	57			1	2	3	5		s	9	111	12
$7 \cdot 6$	57'76	57.915	58.06 5	$58 \cdot 225$	58.37	$58 \cdot 52$	58.68	58.835			2				S			
7.7	59.29	59.44	59.60 5	5975	59	60.06	$60 \cdot 22$	60	-	8	2	3	5				11	1214
$7 \cdot 8$	$60 \cdot 84$	61.006	$61 \cdot 156$		61.47	61^{62}	${ }^{61} 786$	61.94 6				3	5		8		111	1314
$7 \cdot 9$	62.41	62.576	$62 \cdot 736$	$62 \cdot 886$	63.04	63.20	63.366	$63 \cdot 52$	$63 \cdot 686$	$63 \cdot 84$	2	3	5		8		111	$\begin{array}{llll}13 & 14 \\ \end{array}$
8.0	64	66	64.326	64.486	$64 \cdot 64$	$64 \cdot 80$	64.96		$65 \cdot 296$	65.45	2	3	5	6	8		111	4
$8 \cdot 1$	$65^{\circ} 61$	65.77	65.936		66.26	66.42	$6{ }^{6} 59$		-91 6	67.08					S		11	
	67.24	67.406	67.57	67×736	67.90	68.06	68.236		68.56	68.72		3	5		8	101	121	1315
8.3	68.89	69.06	$69^{\circ} 226$	69.39 6	$69 \cdot 56$	$69^{\prime} 72$	69.897	70.067	$70 \cdot 227$	72.39							121	1315
8.4	$70 \cdot 5$	$70 \cdot 737$	70.907	71.067	$71 \cdot 23$	71.40	71.577	71747	71.9172	72.08	2	3	5	7	8	101	121	1415
$8 \cdot 5$	72.25	$72 \cdot 427$	72*597		$2 \cdot 93$	$73^{\circ} \mathrm{I}$	73.277		7	$73^{\prime} 79$	2	3	5	7	9	10	121	
8.6	$73^{\circ} 96$	74.13	74	7	74.65	75.82					2						121	
8.7	$75^{\circ} 69$	$75 \cdot 86$	$76 \cdot 047$	$76^{\circ} 217$	76.39	$76 \cdot 56$	$76 \cdot 747$	76.91	77.097	7	2	4	5			11	121	
8.8	77.44	77.627	277797	77.977	$78 \cdot 15$		178.507	78.687									121	1416
8.9	79.21	79.397	979.577	$79^{\circ} 747$	$79^{\prime 9}$	$80^{\prime} 10$	80.288									II 1	131	1416
9.0	81.00	88	81	$81 \cdot 548$	$81 \cdot 72$	81.90	82.058		8	$82 \cdot 63$	2	4	5	7	9	111	131	1416
$9 \cdot 1$	82.81	S2.99	${ }^{8}$	53.368	83.54	$83 \cdot 72$			-	46							3	
$9 \cdot 2$	$84^{8} 64$	84.82	$85^{\circ} \mathrm{O}$	$5 \cdot 19$	85.38	${ }^{35.56}$	85758			S6.30		4	6			111	131	1517
$9 \cdot 3$	S6.49	86.68	88.7	87.058	87.24	37.42	87.618		S7.088	88°		4	6			$1{ }^{1} 1$	131	
$9 \cdot 4$	88.36	88.55.	88.74 8	88.928	89.11	$89^{\prime 3} 3$	89.498	$89 \cdot 688$	89.879	90	2	4			9	11	131	1517
$9 \cdot 5$	90.25	90:449	$90 \cdot 6$			91.20	91-399		91.789		2	4	6	8	0	111	13	1517
$9 \cdot 6$	92•16	92*35	92.549	92.749	$92 \cdot 93$	$93^{\cdot 12}$	$93 \cdot 32$		93•709		2	4	6	S	10			
9.7	94*09	94.28	94.489	94.679	-	$95 \cdot 06$	$95 \cdot 26$	65.459	$95 \cdot 65$	95.84	2	4	6	S	10	121	141	
9.8	96.04	$96 \cdot 24$	496439	$96 \cdot 639$	${ }^{96} 83$	$97^{\circ} \mathrm{O}$	97.2297	297429	97.69	97.81	2	4	6		10	121	141	1618
$9 \cdot 9$	98.01	98.219	198.419	98.609	98.So	$99^{\circ} 00$	99:209	99.409	$99^{\circ 6} 9$	99.80	2	4	6	8	10	121	141	1618
	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	89

140

NATURAL SINES

	0^{\prime}	6^{\prime}	12'	18'	24^{\prime}	30^{\prime}	36^{\prime}	42'	48'	54'	$1{ }^{\prime}$	$2 '$	3 ' 4'	5^{\prime}
0°	. 0000	-0017	-0035	.0052	-0070	-0087	- 0105	-0122	- 0140	. 0157	3	6	912	15
1	'0175	0192	0209	0227	0244	0262	0279	0297	0314	0332	3	6	912	
2	-0349	0366	0384	0401	0419	0436	0454	0471	0488	0506	3	6	912	
3	.0523	0541	0558	0576	0593	0610	0628	0645	0663	0680	3	6	912	15
4	-0698	0715	0732	0750	0767	0785	0802	0819	0837	0854	3	6	912	14
5	-0872	0889	0906	0924	0941	0958	0976	0993	IOII	1028	3	6	912	14
7	-1045	1063	1080	1097	1115	1132	1149	1167	1184	1201	3	6	912	
7	-1219	1236	1253	1271	1288	1305	1323	1340	1357	1374	3	6	912	14
8	-1392	1409	1426	1444	1461	1478	1495	1513	1530	1547	3	6	912	
9	-1564	1582	1599	1616	1633	1650	1668	1685	1702	1719	3	6	9 II	
10	${ }^{1} 73$	1754	1771	1788	1805	1822	1840	1857	1874	1891	3	6	9 II	14
11	-1908	1925	1942	1959	1977	1994	2011	2028	2045	2062	3	6	9 II	14
12	- 2079	2096	2113	2130	2147	2164	2181	2198	2215	2233	3	6	9 II	14
13	- 2250	2267	2284	2300	2317	2334	2351	2368	2385	2402	3	6	8 II	
14	- 2419	2436	2453	2470	2487	2504	252 I	2538	2554	2571	3	6	8 II	14
15	- 2588	2605	2622	2639	2656	2672	2689	2706	2723	2740	3	6	811	
16	- 2756	2773	2790	2807	2823	2840	2857	2874	2890	2907	3	6	811	14
17	- 2924	2940	2957	2974	2990	3007	3024	3040	3057	3074	,	6	811	14
18	- 3090	3107	3123	3140	3156	3173	3190	3206	3223	3239	3	6	S II 1	14
19	- 3256	3272	3289	3305	3322	3338	3355	3371	3387	3404	3	5	8 II	14
20	$\cdot 3420$	3437	3453	3469	3486	3502	3518	3535	3551	3567	3	5	811	14
21	$\cdot 3584$	3600	3616	3633	3649	3665	3681	3697 .	37,14	3730	3	5	8 II	14
22	$\cdot 3746$	3762	3778	3795	3811	3827	3843	3359	3875	3891	3	5	8 II	13
23	$\cdot 3907$	3923	3939	3955	3971	3987	4003	4019	4035	4051	3	5	811	
24	-4067	4083	4099	4115	4131	4147	4163	4179	4195	4210	3	5	811	
25	-4226	4242	4258	4274	4289	4305	4321	4337	4352	4368	3	5	S IT	13
26	4388	4399	4415	4431	4446	4462	4478	4493	4509	4524	3	5	8101	
27	- 4540	4555	4571	4586	4602	4617	4633	4648	4664	4679	3	5	8101	
28	$\cdot 4695$	4710	4726	4741	4756	4772	4757	4802	4818	4833	3	5	8101	13
29	-4848	4863	4879	4894	4909	4924	4939	4955	4970	4985	3	5	8101	13
30	- 5000	5015	5030	5045	5060	5075	5090	5105	5120	5135	3	5	810	13
31	$\cdot{ }^{5150}$	5165	5180	5195	5210	5225	5240	5255	5270	5284	2	5	7101	12
32	- 5299	5314	5329	5344	5358	5373	5388	5402	5417	5432	2	5	7101	12
33	. 5446	5461	5476	5490	5505	5519	5534	5548	5563	5577	2	5	71012	
34	-5592	5606	5621	5635	5650	5664	5678	5693	5707	5721	2	5	7101	
35	-5736	5750	5764	5779	5793	5807	5821	5835	5850	5864	2	5	791	12
36	. 5878	5892	5906	5920	5934	5948	5962	5976	5990	6004	2	5	791	12
37	-6018	6032	6046	6060	6074	6088	6101	6115	6129	6143	2	5	791	12
38	-6157	6170	6184	6198	6211	6225	6239	6252	6266	6280	2	5	791	II
39	. 6293	6307	6320	6334	6347	6361	6374	6388	6401	6414	2	4	791	II
40	$\cdot 6428$	6441	6455	6468	6481	6494	6508	6521	6534	6547	2	4	791	II
	$\cdot 6561$	6574	6587	6600	6613	6626	6639	6652	6665	6678	2		$7 \quad 91$	11
42	. 6691	6704	6717	6730	6743	6756	6769	6782	6794	6807	2	+	$6 \quad 91$	11
43	-6820	6833	6845	6858	6871	6884	6896	6909	6921	6934		4	6 ¢ 81	11
44	-6947	6959	6972	6984	6997	7009	7022	7034	7046	7059		4	681	10
	0^{\prime}	6^{\prime}	12^{\prime}	18'	24^{\prime}	30^{\prime}	36^{\prime}	42'	48^{\prime}	54'	$1{ }^{\prime}$	$2{ }^{\prime}$	$3^{\prime} 4^{\prime}$	5

NATURAL SINES

NATURAL COSINES

	0^{\prime}	6^{\prime}	12'	18^{\prime}	24'	30	36^{\prime}	42^{\prime}	48^{\prime}	54'	Subtract Differences.			
												2	$3 '$	$4^{\prime} 5^{\prime}$
0°	1000	1'000	1'000	I'000	I'000	I'000	-9999	'9999	'9999	-9999	0	0	0	00
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	-9998	9998	9998	9997	9997	9997	9996	9996	9995	9995	0	0	0	00
	-9994	9993	9993	9992	9971	9990	9990	9989	9988	9987		0	0	1
	-9986	9985	9984	$99 \$ 3$	9982	. 9981	9980	9979	9978	9977	0	0	1	1
	'9976	9974	9973	9972	9971	9969	9968	9966	9965	9963	0	0	1	1 I
5	'9962	9960	9959	9957	9956	9954	9952	9951	9949	-9947	-	1	I	11
6789	'9945	9943	9942	9940	9938	9936	9934	9932	9930	992 S	0	I	I	12
	'9925	9923	9921	9919	9917	9914	9912	9910	9907	9905	0	1	1	22
	$\cdot 9903$	9900	9898	9895	9893	9890	9888	9885	9882	9880		I	1	22
	$\cdot 9877$	9874	9871	9869	9866	9863	9860	9857	9854	9851	0	1	1	22
10	'9848	9845	9842	9839	9836	9833	9829	9826	9823	9820	I	1	2	23
11	$\cdot 9816$	9813	9810	9806	9803	9799	9796	9792	9789	9785	I	1	2	$2 \begin{array}{ll}2 & 3\end{array}$
12	'978I	9778	9774	9770	9767	9763	9759	9755	9751	9748	I	I	2	3
	-9744	9740	9736	9732	9728	9724	9720	9715	9711	9707	1	I	2	$\begin{array}{ll}3 & 3\end{array}$
14.	-9703	9699	9694	9690	96S6	9681	9677	9673	9668	9664	1	1	2	$\begin{array}{ll}3 & 4\end{array}$
15	'9659	9655	9650	96.46	9641	9636	9632	9627	9622	9617	1	2	2	34
16	$\cdot 9613$	9608	9603	9598	9593	9588	9583	9578	9573	9568	I	2	2	$\begin{array}{ll}3 & 4\end{array}$
17	$\cdot 9563$	9558	9553	9548	. 9542	9537	9532	9527	9521	9516	1	2	3	$\begin{array}{ll}3 & 4\end{array}$
	.9511	9505	9503	9494	9489	9483	9478	9472	9,466	9461	I	2	3	45
19	'9455	9449	9744	943 S	9432	9426	9421	9415	$9 \not 709$	9403	I	2	3	45
20	'9397	9391	9385	9379	9373	9367	9361	9354	9348	9342	I	2	3	45
21	- 9336	9330	9323	9317	9311	9304	9298	9291	9285	9278	I	2	3	45
22	-9272	9265	9259	9252	9245	9239	9232	9225	9219	9212	I	2	3	46
$\begin{aligned} & 23 \\ & 24 \end{aligned}$	$\cdot 9205$	9198	9191	9184	9178	9171	9164	9157	9150	9143	1	2	3	56
	-9135	9128	9121	9114	9107	9100	9092	9085	9078	9070	I	2	4	56
25	-9063	9056	9048	9041	9033	9026	9018	9011	9003	S996	1	3	4	56
26	-8988	S9So	8973	8965	8957	S949	S942	8934	S926	8918	I	3	4	56
27	8910	S902	8894	8886	SS78	8870	S862	8554	8846	8835	I	3		57
28	- 8829	S821	8813	8805	S796	S7S8	8780	8771	S763	S755	I	3	4	67
	-8746	8738	8729	8721	S712	S704	8695	8686	8678	S669	I	3	4	67
30	-8660	8652	S643	8634	S625	S616	8607	8599	8590	S581	I	3	4	67
$\begin{aligned} & 31 \\ & 32 \\ & 33 \\ & 34 \end{aligned}$. 8572	$\mathrm{S}_{5} \mathrm{G}_{3}$	8554	S545	8536	8526	S517	S508	8499	S490	2	3	5	68
	- 8480	8471	8462	S453	8443	S434	S425	8415	S406	8396	2	3	5	68
	- 8387	8377	S36S	8358	8348	8339	8329	8320	8310	8300	2		5	68
	- 8290	8281	\$271	8261	S251	8241	8231	8221	82II	8202	2	3	5	78
35	- SI92	8 ISI	8171	8i61	8151	8141	8131	8121	Sili	8100	2	3	5	78
$\begin{aligned} & 36 \\ & 37 \\ & 38 \\ & 39 \end{aligned}$	- 8090	SoSo	So7o	So59	So49	So39	8028	8018	S007	7997	2	3	5	$7 \quad 9$
	-7986	7976	7965	7955	7944	7934	7923	7912	7902	7891	2	4	5	79
	- 7880	7569	7859	7848	7837	7826	7 Cr 5	7 SO 4	7793	7782	2			79
	7771	7760	7749	7738	7727	7716	7705	7694	7683	7672		4	6	79
40	$\cdot 7660$	7649	7638	7627	7615	7604	7593	7581	7570	7559	2	4	6	89
$\begin{aligned} & 41 \\ & 42 \\ & 43 \\ & 44 \end{aligned}$	$\cdot 7547$	7536	7524		7501	7490	7478	7466	7455	7443	2			
	$\cdot 7431$	7420	7403	7396	7385	7373	7361	7349	7337	7325	2	4	6	810
	$\bigcirc 7314$	7302	7290	7278	7266	7254	7242	7230	7218	7206	2	4	6	810
	-7193	7181	7169	7157	7145	7133	7120	7108	7096	7083		4	6	
	0												3	$4^{\prime} 5^{\prime}$
		6	12	18	24	30	36^{\prime}	42	48	5		Sub	ren	ct ces.

NATURAL COSINES

NATURAL TANGENTS

	0	${ }^{\prime}$	12'	$18{ }^{\prime}$	24^{\prime}	30	36^{\prime}	42	48	54	$1^{\prime} 2{ }^{\prime}{ }^{\prime}$	4
0°	-0000	0017	-0035	-0052	0070	0087	05	0122	Or40	0157	36	91215
$\frac{1}{2}$	$\left.\begin{aligned} & 0175 \\ & 0349 \end{aligned} \right\rvert\,$	$\begin{aligned} & 092 \\ & 0367 \\ & 0 \end{aligned}$	$\begin{aligned} & 0209 \\ & 0384 \\ & 0 \end{aligned}$	$\begin{aligned} & 0227 \\ & 0402 \end{aligned}$	$\begin{aligned} & 0244 \\ & 0419 \end{aligned}$	04	$\begin{aligned} & 0279 \\ & 0454 \end{aligned}$	$\begin{aligned} & 0297 \\ & 0472 \end{aligned}$	$\begin{array}{r} 0314 \\ 034 \\ 0489 \end{array}$	${ }_{\substack{0332 \\ 0507}}$	3	
3		0542	0559	0577		06					$3{ }^{3} 6$	
			0734			0787						
5	-0875	-892	-9	0928	0945	096	${ }^{9} 81$	0998	1016	1033	3	91215
6	${ }_{-1051}^{128}$	1069	${ }_{1263}^{1086}$		1122	1139	1157	1775	1192	8	$\begin{array}{lll}3 & 6 & 9 \\ 3 & 6 & \\ 3\end{array}$	
8		1423	1441					153	1548		3	
9	15	1602	1620	163	1655	167	16	178	1727	1745	36	
10	1763	1781	1799	1817	1835	1853	1871	1890	1908	1926	3	9 1215
11		1962 2144 2	1980		2016			1	22		36	
$\begin{aligned} & 12 \\ & 12 \end{aligned}$				23				2254 2438	2272 2456		3 3 3	
14	249	25	25	2549	2568	2586	2605	${ }_{2623}$	26	2661	36	
15	-2679	2698	2717	2736	2754	2773	279	2811	2830	2849	369	91316
16	-28	2886 3076		2924	2943	2962	29	3000	3019 3215	38	${ }^{3} 669$	991316
18								3191				
19	344	346	348	3502	3522	3541	3561	3581	360	562		
20	-3640	365	36	369	3719	3739	3759	3779	3799	3819	3710	-13 17
$\begin{aligned} & 21 \\ & 22 \end{aligned}$		3859 4061		3899 4109	3919 4122			79	4000	20	3	17
${ }^{2}$	-424	4265	4286	4307			${ }_{4}^{4369}$		44		3	
24	445	4473	4494	4515	4536	455	457	4599	46	44^{6}		
25	4663	468	4706	4727	4748	4750	4791	48 ז3	4834	4856	4711	11418
26 27	. 4877	4899										
28											4	
29	. 55	55	55	5	56	5658		570	57	575	,	
30	-572	5797					5914	5938	5961	5985		
		$\begin{aligned} & 6032 \\ & 6273 \end{aligned}$	$\begin{array}{\|l\|l} 6056 \\ 6297 \end{array}$	$\begin{aligned} & 6080 \\ & 6322 \end{aligned}$	6104 6346			6176		$\begin{aligned} & 6224 \\ & 6469 \\ & 649 \end{aligned}$		
$\begin{aligned} & 32 \\ & 33 \end{aligned}$		65								6469 6720	${ }_{4}^{4} 8812$	
34	-6745	677				68	68	6924		69		
35	7002	7028	7054	7080		713	715	7186	7212	7239		
			7319	7346					7481	8		
$\begin{aligned} & 37 \\ & 38 \end{aligned}$	${ }^{7813}$	${ }^{7563}$	75					7729 8012	7757		5-9 9	
39	-809	8127	81	S185	8214	82	827	83	833^{2}	8361	51015	152024
40	8391	8_{4}	8451	8481			8571	8601	8632	8662	5 10	2025
					8816					72		
43				9424								28
44	. 9657	9691	9725	9759	9793	9827	${ }_{9861}$	${ }_{9896}$	9930	9965	61117	172329
	0^{\prime}	6^{\prime}	12	18	24	30°	36^{\prime}	42^{\prime}	48'	54	${ }^{\prime}$	$3^{\prime} 4^{\prime}$

NATURAL TANGENTS

	0^{\prime}	6	12'	18^{\prime}	24	30^{\prime}	36^{\prime}	42'	48^{\prime}	$54 i$	$1^{\prime} 2^{\prime}$	8^{\prime}	$4{ }^{\prime}$
45°	1.0000	. 0035	0070	- 0105	. 0141	-176	0212	0247	0283	O319	612	18	2430
46	1'0355	0392	0428	0464	0501	0538	0575	0612	0649	0686	612	18	$25 \quad 31$
47	1.0724	0761	0799	0837	0875	0913	0951	0990	1028	1067	613	19	25.32
48	$1 \cdot 1106$	1145	1184	1224	1263	1303	1343	1383	1423	1463	713	20	$27 \quad 33$
49	$1 \cdot 1504$	1544	1585	1626	1667	1708	1750	1792	1833	1875	714	21	$28 \quad 34$
50	1•1918	1960	2002	2045	2088	2131	2174	2218	2261	2305	714	22	2.) 36
51	I'2349	2393	2437	2482	2527	2572	2617	2662	2708	2753			$30 \quad 38$
52	1-2799	2846	2892	2938	2985	3032	3079	3127	3175	3222	816	24	$\begin{array}{lll}31 & 39\end{array}$
53 54	$\begin{aligned} & 1 \cdot 3270 \\ & 1 \cdot 3764 \end{aligned}$	3319 3814	3367 3865	3416 3916	3465 3968	3514 4019	3564 4071	3613 4124	3663 4176	3713 4229	816 9 17	25 26	$\begin{array}{ll}33 & 41 \\ 34 & 43\end{array}$
55	1.428I	4335	4388	4442	4496	4550	4605	4659	4715	4770	918	27	$36 \quad 45$
56	1.4826	4882	4938	4994	5051	5108	5166	5224	5282		1019		3848
57	1 53399	5458	5517	5577	5637	5697	5757	5818	5880	5941	1020	30	$40 \quad 50$
58 59	1.6003 1.6643	6066 6709	6128 6775	6191 6842	6255 6909	6319 6977	6383 7045	6447	6512 7182	6577 7251	$\begin{array}{ll}\text { II } & 21 \\ \text { II } & 23\end{array}$	32 34	$\begin{array}{lll}43 & 53 \\ 45 & 57\end{array}$
60	1'7321	7391	746 I	7532	7603	7675	7747	7820	7893	7966	12	36	4860
61	1-8040	8115	8190	8265	8341	8418	7495	8572	8650	8728	1326	38	5164
62	1.8807	8887	8967	9047	9128	9210	9292	9375	9458	9542	1427	41	$55 \quad 68$
63	I'9626	9711	9797	9883	9970	2.0057	2.0145	2.0233	-0323	2.0413	1529	44	$\begin{array}{ll}58 & 73\end{array}$
64.	2.0503	0594	0686	0778	0872	0965	1060	1155	1251	1348	1631	47	$63 \quad 79$
65	$2 \cdot 1445$	1543	1642	1742	1842	1943	2045	2148	2251	2355	1734	51	$68 \quad 85$
66	$2 \cdot 2460$	2566	2673	2781	2889	2998	3109	3220	3332	3445	1837	55	$73 \quad 92$
68	2.3559	3673	3789	3906	4023	4142	4262	4383	4504	4627	2040		$\begin{array}{r}79 \\ 89 \\ \hline 108\end{array}$
68	2.4751	4876 6187	5002 6325	5129 6464	5257 6605	53886	5517 6889	5699	5782	5916	2243	5	87108
70	$2 \cdot 7475$	7625	7776	7929	8083	8239	8397	8556	8716	8878	26	78	105131
71	2.9042	9208	9375	9544	9714	9887	-0061	3.0237	3.0415	-0595	29		116145
72	3.0777	0961	1146	1334	1524	1716	1910	2106	2305	2506	3264	96	129161
73	3.2709	2914	3122	3332	3544	3759	3977	4197	4420	4646	36	108	144180
74.	3.4874	5105	5339	5576	5816	6059	6305	6554	6806	706		122	3204
75	3.7321	7583	7848	8118	8391	8667	8947	9232	9520	9812	46	I 39	6232
76	4.0108	0408	0713	1022	1335	1653	1976	2303	2635	2972			
77	4.3315	3662				5107	5483		6252				
78	$\begin{array}{\|c} 4.7046 \\ 5 \cdot 1446 \end{array}$	7453 1929	7867 2422	8288 2924	8716 3435	9152 3955	9594	$55^{\circ} 0045$	5.0504	50970 6140			
79	$5 \cdot 1446$	1929	2422	2924	3435	3955	4486	5026	5578	6140			
80	$5 \cdot 6713$	7297	7894	8502	9124	9758	. 0405	6. 1066	6•1742	6.2432			
81	6.3138	3859	4596	5350	6122	6912		8548				龶	erences
82	7'1154	2066	3002 3863	3962 5126	4947 6427	5958 7769	6996 9152	8062 9.0579	-9158	$\left\|\begin{array}{l} 8.0285 \\ 9.3572 \end{array}\right\|$			
84	9.514	$9^{\circ} 677$	9'845	10.02	$10 \cdot 20$	10'39	$1{ }^{1} 58$	$10 \cdot 78$	$10 \cdot 99$	11:20			curate.
85	11.43	II•66	11'91	$12 \cdot 16$	12.43	12.71	$13^{\prime} 00$	13.30	13.62	13.95			
86	14.30	$14^{6} 7$.	15.06	15.46	15.89	16.35	16.83	17.34	17.89	18.46			
87		19 30.14	20.45 31.82	21.20	22.02 35.80	22	23.86	24.90	26.03	27.27			
89	57.29	63.66	71.62	81.85	35.49		40.92	$191^{4} 0$	4774 286	5730			
	0^{\prime}	6^{\prime}	12':	18'	24^{\prime}	30^{\prime}	36^{\prime}	42^{\prime}	48'	$54 '$			

*	0 :	. 6^{\prime}	12'	18'	24^{\prime}	30^{\prime}	36^{\prime}	42^{\prime}	48'	54i	1^{\prime}		3' 4' 5^{\prime}
$0{ }^{\circ}$	-0000	-0017	. 0035	-0052	-0070	-0087	- 0105	. 0122	-0140	-015	3	6	91215
1	-0175	or92	0209	. 0227	. 0244	0262	0279	0297	0314	0332	3	6	91215
2	-0349	. 0367	0384	-0401	0419	0436	0454	0471	0489	0506	3	6	91215
3	-0524	0541	0559	0576	0593	06 II	0628	0646	0663	0681	3		91215
4.	-0698	0716	0733	0750	0768	0785	0803	0820	0838	0855	3	6	91215
5	-0873	0890	0908	0925	0942	0960	0977	0995	1012	1030	3	6	91215
6	$\cdot 1047$	1065	1092	1100	1117	1134	1152	1169	1187	1204	3		91215
8	- 11222	1239	1257	1274	1292 1666	1309	1326	1344	1361 1536	1379	3	6	$\begin{array}{lllll}9 & 12 & 15 \\ 9\end{array}$
8	+1396 -1571	1414 1588	1431 1606	1449 1623	1466 1641	$1 \begin{array}{r}1484 \\ 1658\end{array}$	1501 1676	1518	1536 1710	$\begin{array}{r}1553 \\ 1728 \\ \hline\end{array}$	3		9 C 1215
10	-1745	1763	1780	1798	1815	1833	1850	1868	1885	1902	3		9-12 15
11	-1920	1937	1955	1972	1990	2007	2025	2042	2059	2077	3		91215
12	- 2094	2112	2129	2147	2164	2182	2199	2217	2234	2251	3		91215
13	$\cdot 2269$	2286	2304	2321	2339	2356	2374	2391	2409	2426			91215
14	-2443	2461	2478	2496	2513	2531	2548	2566	2583	260	3	6	91215
15	- 2618	2635	2653	2670	2688	2705	2723	2740	2758	2775	3		91215
16	-2793	2810	2827	2845	2862	2880	2897	2915	2932	2950	3		9. 1215
17	- 2967	2985	3002	3019	3037	3054	3072	3089	3107	3124	3		91215
18	$\cdot 3142$	3159	3176	3194	3211	3229	3246	3264	3281	3299	3		91215
19	-3316	3334	3351	3368	3386	3403	3421	3438	3456	3473	3		91215
20	'3491	3508	3526	3543	3560	3578	3595	${ }^{6613}$	3630	3648	3		91215
21	- 3665	3683	3700	3718	3735	3752	3770	3787	3805	3822	3		91215
22	- 3840	3857	3875	3892	3910	3927	3944	3962	3979	3997	3		91215
23	4014 -4189	4032	4049 4224	4067 424	4084	4102	4119 4294	4136	4154 4328	4171 4346	3		$\begin{array}{llll}9 & 12 & 15 \\ 9 & 12 & 15\end{array}$
25	-4363	438.1	4398	4416	4433	4451	4468	4485	4503	4520	3		91215
26	4538	4555	4573	4590	4608	4625	4643	4660	4677	4695	3		1215
27	$\cdot 4712$	4730	4747	4765	4782	4800	4817	4835	4852	4869	3		9.1215
28	- 48887	4904 5079	4922 5096	4939 5114	4957 5131	4974 5149	4992 5166	5009 5184	5027 5201	5044 5219	3	6	$\begin{array}{lllll}6 & 9 & 12 & 15 \\ 9 & 12 & 15\end{array}$
30	-5236	5253	5271	5288	5306	5323	5341	5358	5376	5393	3		91215
		5428	5445	5463	5480	5498				5568			1215
32	-5585	5603	5620	5637	5655	5672	5690	5707	5725	5742			9.1215
33 34	$\begin{array}{r}5 \\ . \\ .5760 \\ \hline\end{array}$	5777 5952	5794 5969	5812 5986	5829 6004	5847 6021	5864 6039	5882 6056	5899 6074	5917 6091			$\begin{array}{llllll}6 & 9 & 12 & 15 \\ 6 & 9 & 12 & 15\end{array}$
34	. 5934	5952	5969							6091			91215
35	.6109	6126	6144	6161	6178	6196	6213	6231	6248	6266			$9: 1215$
36	-6283	6301	6318	6336	6353	6370	6388	6405	6423	6440			91215
31	-6458	6475	6493	6510	6528	6545	6562	6580	6597	6615			$6 \quad 91215$
38	-6632	6650	6667	6685	6702	6720	6737	6754	6772	6789			91215
39	-6807	6824	6842	6859	6877	6894	6912	6929	6946	6964	3	36	9-12 15
40	6 6381	6999	7016	7034	7051	7069.	7086:	7103	121	7138			6.9-12 15
41	7156	7173	7191	7208	7226	7243	7261	7278	7295	7313			9:12 15
42	7330	7348	7365	7383	7400	7418	7435	7453	7470	7487			91215
43	$\checkmark 7505$	7522	7540	7557	7575	7592	7610	7627	7645	7662			6.912 ± 5
44	'7679	7697	7714	7732	7749	7767	7784	7802	7819	7837	3	3	6.91215
	0^{\prime}	6^{\prime}	12'	18^{\prime}	24'	30^{\prime}	36^{\prime}	42'	48'	54'			$3^{\prime} 4^{\prime} 5$

?

INDEX

Aberration, constant of
PAGE
13Abraham, electronic theory of, zero of temperature
Absolute temperature scale 44, 54
Absorption coefficients, β and γ rays 44, 54
, , X rays. 07 93
Absorption spectra.
Actinium emanation, diffusion of 77 77 103
Activities, equilibrium (minerals) 104
Air, composition of 125
,, , (damp) ,
", , (dry) density of 25, 26
,, , (saturated) water in 39
Alloys, composition of 20, 27, 51, 53, $8 \mathrm{r}, 89$100
, gaseous ionization by 10I, 102
,, , number of - 100, 106
, , number of ions from 101, 106
,, - , range and velocity of , stopping powers100, 106100
Altitudes above sea-level II
", determination of, by barometer 35
Ampère, determinations of S
, , international 6
Angles of contact 37
Angström unit 9
Antilogarithms 132
Apothecaries' units. 9
Arcs, electric - 105
Aries, first point of - 3
Astronomy 13-15
Atmosphere, composition of 125
,, Ra Em. in 105
"Atmosphere," value of 5
Atomic constants 106
Atomic weights, international : I, 2
Babinet's altitude formula - 35
Barometer, capillarity corrections - 17
" , determination of altitudes by 35 is
", , reduction to lat. 45°
", , reduction to lat. 45° 18 18", , reduction to $0^{\circ} \mathrm{C}$.
,", , reduction to sea-level - 18
Baume's hydrometer $2 I$
β rays, absorption coefficients of 107
", , e/ ionization by 98 101
, number of
, number of 106 106
", , velocity of 98
Black body radiation 47
Board of Trade unit (electric energy)

- 5
- 5
Bode's Law 14 50
Boiling points, effect of pressure on
Boiling points, effect of pressure on
" ", elements.Boiling points, inorganic compounds 109-117
", ,, mixtures, maximum 12
", ", , , minimum 128
," ,, , organic compounds 118-123
", ", water 41
Boyle's Law, deviation from 50
British Association screws 10
British coinage 10, 20
British thermal unit 9
British units 4
British weights and measures 4
Buoyancy correction of weighings 19
Bursting streng'ths of glass tubing 21 39
Cadmium cell, determinations of 8
Calories, values of 5, 55, 56
Candle, standard 70
, , energy from 70
Capacity, specific inductive 70 84
17
Carcel light unit 70
Cathode rays, e / m of 98
98
Cauchy's dispersion formula
Cells, e.m.f.'s of 71
, , resistances of 88
Centigrade and Fahrenheit degrees 10
Centimetre, definition of 3
C.G.S. units 3
Charge on the ion 97, 106
Clark cell, e.m.f. and temp. coef. of 8
Clausius-Mossotti relation 84
Coefficients of expansion, gases 54
" , liquids 55
Coercive furce 52 89
Coercivity
Coins (British), composition of 89 20
", ,, , density of
", ", , dimensions of 20 10
", ", weight o
Combustion, heats of 64
Composition of air 125
" of alloys 126
Compressibility 27-29
Condensation of vapours. 96
Conductivities, electrical. 81
(solutions) 86
Conductivities, thermal 51
Conversion factors 9, 4
Cosines, natural PAGE
Critical data 34, 61
", temperature (magnetization) 90
Crookes darls space 66
Electronic e/m, change of, with velocity 99
Electrons (negative), magnetic deflection of 99
e / m of $\alpha^{\prime \prime}$ rays 98
Dark space 93
Dates of isolation of elements 2
Day, definition of 3
Declination, magnetic 91
Densities, acids 23
, air (dry) 25, 26
, ,, (danup) 22
, alkalies 24
, aqueous solutions 25
calcium chloride 24
, common substances 20
, elements 20
, gases
09-117
09-117
, Jena glasses 74
, mercury 22
, minerais 126
, organic compounds 118-123
steam 26
water 22
, water vapour 26
Density determination corrections $2 I$
Depression of freezing point 66 66
Depression of ice point of mercury thermo- meters

45
38

45
38

Dew point
Dew point
"Diapason Nurnial" 68
Dielectric constants S4
Dielectric strength of air 93
Diffusion of Ac, Ra, Th emanations 103
" of gases 35
" of ions (gaseous) 94
Dilution, heats of 64
Dimensions of units 7
Diopter, the So
Discoverers of elements 2
Dispersions, optical 71
Dispersive powers 73, 74
Dissociation, ionic 85
Distances of stars 15
Distances on earth's surface 12
Drachm, value of 9
ϵ (exponential), value of 9
97, 106
e, ther 68
tas
tas
Ear, sensitivenebs of 68
Earth, density of, etc. 13
, , elements of. 13
\#. , size and shape of 13
Ecliptic, obliquity of 13
Efficiencies, luminous 70
Einstein, relativity theory of 99
Elasticities 27
Electrical conductivities
", units, "ceterminations of 86, 87 8 105
Electric arcs.
Electrochemical equivalents 123
Electrolysis, laws of 123
Electromotive forces of cells 88
Electronic e/m 98
" electrons 98, 99
" helium 106
,, hydroger ion 106
Emergent-column, thermometer correction.
45
45
Emission spectra
76
76
Energy of full radiation 65
Equation of time 15
Equilibrium activitics (minerals) 104
Equivalents, electrochemical 123
Expansion coefficients, gases 54
" , , liquids 55
Exponential e^{-x} 52
Factors, gravimetric 127
Fahrenheit and Centigrade degrees 10
Faraday effect 80
Faraday's laws of electrolysis 123
Fats, melting points of 50
Fire, temperature of 47
Flames, ionic mobilities in 96
Fluid ounce 9
Foil (metal), thickness of 35
Formation, heats of 62
Fraunhofer lines 75
Freczing mixtures 117
Freezing point, deprcssion of 60
Full radiation 65
Fuses S_{3}
Fusion, latent heats of 60
Gallon, definition of -4,9
γ rays, absorption coefficients of 107
", , ionization by 101
Gas constant 5, 106
Gaseous volumes, reduction of 19
Gas thermometers, thermodynamic correc- tions to 44
Gas thermometry 44
Gauge, standard wire 83
Gauss, the 7
Gcographical mile 10
Glaisher's factors 39
Glass 74
", Jena 74
Glass tubing, bursting strengths of 39
Grain 9
Gramme, definition of 3
Gravimetric factors 127
Gravitation, constant of 13
Gravity correction of barometer 18
Gravity, values of II
H.ardness, of minerals 126
,", scale of (Mohs') 126
Half-periods, radioactive substances 107
Heat conductivities 5 I
Heat from radium 102, 106
", "RaEm. 102
", ", racks 104
Heat, mechanical equivalent of 102
Heats, latent 55
Heats of combustion 64
Heats of dilution 6_{4}
", formation62, 64Heats, specific, elements.56
", ", , gases
", ", , miscellaneous 56
,, , water 56
Hefner light unit
Heights above sea-level 70
Helium from radium 106
Henry, the 7
Hertzian waves, velocity of 69
Heusler alloys 89
Humidity, relative 38
Hydrometers 21
Hygrometer, chemical 39
"metry 3 S
Hygrometry 3^{8}
Hyperbolic logs, conversion factor
Hyperbolic logs, conversion factor 9
Hysteresis, magnetic 89ICE-point, thermodynamic temperature of
44, 54
Inclination, magnetic
Inductive capacity, specific 91
Inductivity 84
Inertia, moments of 16
Ionic charge 97, 106
, dissociation S5
," mobilities (gascous) 95, 105
". " (gaseous) at high tempera- tures 96
", ", (liquids) 88, 95 95
Ionization by α, β, γ, and X rays 101, 102
Ions gaseous (diffusion of) 94
," ", recombination of 94
Jena glasses, density of - 74
, , , , dispersive power of 74
", ", optical 74
", ", , refractive index of 72
Toule, the" 45, 74
Joule's equivalent 555
Joule-Thomson effect
Kirchiloff, vapour pressure formula 40
Knot, the 10
Langley and Abbot's solar work 65
Latent heat of fusion 60
Latitudes
11, 91
Lenard rays 98
Light, magnetic rotation of 80
", optical rotation of -8
,, , reflection of So
, , units of 70
,, , velocity of
,, , velocity of 69
Light-year 15
Litre, definition of 4.10
Logarithms, five-figure 134
Longitudes' 130
11, 91
11, 91
Lorentz, electronic theory of 99
Luminous efficiencies 70

INDEX

Magnetic constants, terrestrial page
deflection of electrons 99
Magnetic induction 89
Magnetic rotations of polarized light 80
Mathematical constants 9
Maximum boiling-point mixtures 128
Maxwell's relation 84
Maxwell, the
7
7
Mechanical equivalent of heat
55
55
Megabar, value of 5, 27
Melting points, elements 48
," , , fats and waxes 50
,, ,, , inorganic compounds 109
Mercury therinometers, depression of zero of 45, reduction to gasscale of45
, stem exposure cor-rection45
thermometry 45
Metallic reflection of liglt $\begin{array}{r}35 \\ 80 \\ \hline\end{array}$
Metre, definition of 3
Metric units 3
Meyer's viscosity equation 31, 3^{2}
Micron μ (and $\mu \mu$) 9
Migration Ratios 85
Mil, value of 9
Minerals, activities in IOA
composition of 126
,, , density of 126
, , , hardness of 126
,, , radioactive 104, 126
,, , scale of hardness (Mohs') 126 9
Minim, value of
Minim, value of
Minimum boiling-point mixtures - 128
Miscellaneous data 9, 10
Mobilities of ions, flames 96
,, ,, , gaseous
,, ,, , gaseous 95 95
", ,, , gaseous at high tempera tures 96
", ", liquids S8, 95
", ,. , natural 105
Mohs' scale of hardness 126
Molecules, free path of 32
,, , number of, in gas 97, 98, 106
", , size of 3^{2}
Moments 32
Moon, elements of 13
Mossotti, Clausius-, relation 84
Motions of stars 15
Musical scales 68
Nautical mile
10
10
Negative electrons, e / m of 98, 106
", " mass of 106
," , , radus of 106 98
Neutralization, heats of
Neutralization, heats of
Normal diapason 68
OHM, determinations of 8
", international 6
Optical rotations, quartz 79
" \quad, , liquids 78
Optical thermometry 47
68
Organ pipes, wave lengths from page
Ounce, values of 9
Parallax, equatorial solar 13
", , stars 15
Permeability 89
Photometry 70
Physical constants, inorganic compounds$109 \cdot 117$
"
9
9
Planck's radiation formula 65
Planets. 14
Platinum thermometers; reduction to gas scale 46
Platinum thermometry 46
Poisson's ratio 27
Polarized light, magnetic rotation of 80
Polonium 107, 108
Pound, definition of 4
Precession, constant of 13
Pressure coefficient of expansion 54
10
Pressure, critical 34
Pressure, vapour. See Vapour pressure 40, ro3
Pressure, effect of, on boiling points 50
PV , pressure coefficient of - 10
Pyrometers 46, 47
Radians 9, 146
Radiation, full 65
Radiation thermometers 47
Radioactive decay constants 107
, minerals 104
 107 , 107 , 107 103
Radium, heat from
102
102 105 105 103 103
", ". ", in rocks
", ". ", in rocks 102
,, , helium from
,, , helium from 106 106
", , in rocks , in sea water

", , in rocks , in sea water \begin{tabular}{l}
104

105

\hline

104

105

\hline
\end{tabular}

Ramsay and Young's vapour pressure law 40
Range of a rays 100
Rankine, vapour pressure formula of 40
Ratio of E.M. to E.S. unit 69
Rayleigh's radiation formula 65
Reciprocals 136
Recombination of ions (gaseous) 94
Reflection of light (metallic) 80
Refractive indices, gases. 71
" ", Jena glasses $\quad 72,74$ 72 72
Relativity theory of Einstein
Relativity theory of Einstein 99
Resistance, specific
Resistance, specific 31,, , temper
Resistances of cells S2
. $\quad \because$. of wires 83
Resistivities 82
Rigidity, modulus of 27
, , temperature coefficient of 28
Rocks, Ra , Th, in page 04
Röntgen rays, homogeneous
", ", ionization by IOI
Rotations (magnetic) of polarized light So
". (optical) of liquids 78
", " of quartz 79
SAFE currents for wires 83
Satellites of planets 14
Saturated air, water in 39
Scale of hardness (Mohs') 126
Scales, musical 68
Screws, pitch of, etc. 16
Sea-water, radium in 105
Second, definition of 3
Secular magnetic changes 92
Sensitiveness of ear to pitch 68
Sikes' hydrometer $2 I$
Silvering solution 73
Sines, natural 140
Size of drops 37
Solar constant 65
,, parallax, equatorial 13
,, spectrum 75
Solubilities aqueous, gases 14 124
,, ,, , inorganic compounds
109-117
of liquids (mutual) 125 125
Sound, velocity of 24 24
Sparking potentials 93
Specific heats, elements 56
", ", gases, constant pressure 58
, \quad, \quad, , constant volume 58
", ", , mercury 58
56
", ", miscellaneous 59
Speccific inductive capacity 56
Specific resistances 81
Specific volume 22
Spectra, absorption 77
, , cmission (gases) 77
Spectroscopy 76 75
Squares 138
Standards, British 4
" , British and metric equivalents 4,9
Standard conductivity solutions 86
,, spectrunt lines 75
," temperatures 50
", times 15
", wire gauge 83
Stars, distances of 15
,", motions of 15
,, , parallaxes of
47, 65
Stefan-Boltzmann law 15
65
Steinmetz' hysteresis formula 90
Stem exposure corrections of mercury ther- mometers 45
Stopping powers (a rays) 100
Strengths, bursting glass tubing 39
,, , tensile (liquids) 39
Sun, elements of 13, 14
", temperature of 65
Surface tencions - 3^{6}
Susceptibility PAGE
89,90
Sutherland's viscosity equation31, 32
Tangents, natural
144
Temperature coefficient, conductivity (solns.) 86
, dielectric constant 84
", ", , magnetization 90
, refractive index , resistance
" "
, rigidity 82, 83
, surface tension 36
, tuning fork 68
, viscosity (gaseous) 32
Weston cell.
, Young's modulus. ," 28
Temperature of fire, by appearance 47 65
of sun
of sun
Temperatures, critical 34
, standard 50
Tenacities 28
Tensile strengths, liquids 39
Tension, surface 28 36
Terrestrial magnetic constants
Thermal conductivities 91 91 51
Thermochemistry
Thermo-couples 46, 47
Thermodynamic correction to gas thermo-
meters
meters 44 44
" $\quad \begin{aligned} & \text { scale } \\ & \text { temperature of ice-point }\end{aligned}$ 44, 54
ö-junctions 46, 47
Thermo-junctions
44
Thermometry, gas
45
45
" , mercury 47
,, , platinum 46
", , radiation 47
46, 47
Thickness of liquid films 37
Thorium emanation, diffusion of 35
Thorium, heat from 103
, , in rocks 102 102 104
Time, equation of
Times, standard 15 15

- Tonne, value of 15
Transport numbers 89
Transverse vibrations of rods 68
Trouton's Rule 60
Troy units 9
Tubing (glass), bursting strengths of 39
Tuning fork, temperature coefficient of 68
Twaddell's hydrometer 21
Units.
British 3
,, , derived
dimensions of 6
elect 70
United States 3
9

INDEX

" \mathbf{V}," ratio of electrical units
Van der Waals' equation 69PAGE
Vaporisation, latent heats of 34
Vapour pressures 40
" " , alcohol, ethy 41
" ", , compounds 4^{2}
" ", elements 42
", " 40
mercury
Vapour pressures, Ka Em. 41
", ", water 40
Vapours, condensation of 96
Velocity of a rays 100
, Hertzian waves 69
ions. See Mobilities light (in liquids) 69
," (in vacuo) 69
negative electrons 99
sound 67
Verdet's constant 68
Vibrations of rods 68
Viscosities, gases 31
," ,.," (temperature coefficients of $\begin{array}{r}32 \\ 30 \\ \hline\end{array}$
, solids 3_{1}
, solutions aqueous 31
vapours
vapours 31 31
Volt, international 6
Volume calibration 17
coefficient of expansion 54
critical 34
Volumes (gaseous) reduction to $0^{\circ} \dot{\mathrm{C}}$. and760 mm .19
Water vapour, density of 26
Watt, the 39
Waxes, melting points of 50
We ighings, reduction to vacuo 19
Weights and measures, British - 4
Weston cell, determinations of 8
Wet and dry bulb hygrometer 3^{8}
Whitworth screws 16
Wien's displacement law 65
" radiation formula 47, 65
Wire gauge, standard 83
Wire resistances s_{3}
\mathbf{X} rays, homogeneous 93
" ionization by 101
Yard, definition of 4, 9
Years, various 3
Young's modulus 27
Young's, Ramsay and, vapour pressureformula40
Zeeman effect, e/mfrom 9S, 99
(2)

RARY OF THE UWIVERSITY OF CALIFORNIA

bary of the university of callforma

ary of the university of califormia
libraby of the university of califormia

GALIFORMIA

LIBRARY OF THE UNIVERSITY OF CALIFORNIA

LIBRARY OF THE UNIVERSITY OF CALIFORNIA

LIBRARY OF THE UHIVERSITY OF CALIFORIIA

[^0]: * Beryllium or Glucinum (GI).
 \dagger Niobium or Columbium (Cb).
 The following atomic weights for 1911 (see pp. 109, 127) include only those which have been subsequently changed:-
 $\mathrm{Ca}, 40.09$; C, 12.00 ; Er, 167.4 ; IIe, 3.99 ; $\mathrm{Fe}, 55^{.85}$; Kr, 829 ; $\mathrm{Pb}, 207.10$; $\mathrm{Lu}, 174^{\circ} \mathrm{O} ; \mathrm{Hg}, 200^{\circ} \mathrm{O} ; \mathrm{Pr}, 140^{\circ} 6 ; \mathrm{Ra}, 226^{\circ} 4 ; \mathrm{S}, 32^{\circ} 07$; $\mathrm{Ta}, 181^{\circ} \mathrm{O} ; \mathrm{Th}, 232^{\circ} \mathrm{O}$; $\mathrm{Sn}, 119^{\circ} 0 ; \mathrm{U}, 238^{\circ} 5 ; \mathrm{V}, 51^{\circ} 06 ; \mathrm{Yb}, 172^{\circ} \mathrm{O} ; \mathrm{Y}, 89^{\circ} \mathrm{O}$.

[^1]: * According to the latest estimates, the mean meridian quadrant $=10,002,100$ metres (see p. 13).
 \dagger Tidal friction is retarding the rotation of the earth, so that the above (sidereal) definition of the second, while practically justificd, is theoretically not quite perfect.
 \ddagger The first point of Aries is that one of the two nodes of intersection of the ecliptic and the celestial equator where the sun (moving in the ecliptic) crosses the equator from south to north (at about March 21). The ccliptic is the apparent yearly track of the sun in a great circle on the celestial sphere.
 § Neglecting small irregularities, this is true also for any star.

[^2]: * Mean of Helmert and U.S. Survey.
 \dagger Using Boys' and Braun's result for density.

[^3]: * This is the angle subtended by the semi-diameter at a distance equal to the Earth's miean distance from the Sun.
 \dagger The inclination of the plane of the Sun's equator to the plane of the ecliptic.
 $\ddagger \mathrm{D}$ means direct ; R , retrograde.
 § The ellipticity $=(a-b) / a$, where a is the major axis and b the minor axis of the spheroid of revolution. The value given for the Earth is-Helmert's (p. \ddagger) $)$

 II Perihelion is the point in the orbit nearest the Sun. Lungitude is the angular distance from the first point of Aries (see p. 3), measured along the ecliptic.

 I A node is one of the two points at which a planet's orbit intersects the plane of the ecliptic. At the ascending node the planet passes from south to north of the ecliptic.
 ** The eccentricity $=\sqrt{\left(a^{2}-b^{2}\right)} / a$, where a and b are the major and minor axes of the orbit.

[^4]: * Grindley and Gibson.

[^5]: * Extrapolated.
 + The vapour pressures here given have been graphically interpolated from the observers' values. B., Bodenstein ; C., Callendar ; D., Dewar ; F., Faraday ; K., Kahlhaum ; M., Macisintosh ; R., Regnault ; Ra. and Y., Ramsay and Young ; Ri., Richardson ; S., Schmidt ; Y. and T., Young and Thomas.
 \ddagger Triple point.

[^6]: *These constants are not suitable for temperatures below 300°. \dagger Eureka, $60 \mathrm{Cu}, 40 \mathrm{Ni}$.

[^7]: * See section on thermo-electric thermometers, p. 46, for meaning of (a) and (b).
 \dagger In reducing atmosphere; 995° in air. \ddagger Const, vol. N. thermometer.

[^8]: * See Guillaume's "Les Applications des Aciers au Nickel," 190+. + Invar is obtainable in three qualities, with a range of coefficients of $(-3$ to +2.5$) \times 10^{-6}$ at ordinary temperatures. \ddagger Used for international prototype metre (see p. 3). § Used for Imperial Standard Yard (see p. 4). B. Benoît; Bd. Bedford; C. Chappuis; D. Dittenberger; Dl. Daniell ; F. Fizeau; H. Hagen ; H.D. Holbom and Day ; H.G. Holborn and Griineisen; M. Matthiessen ; N.P.L. National Physical Laboratory ; Pf. Pfaff; R. Randall. Ru. Russner ; S. Scheel ; Sc. Schott; Sm. Smeaton; St. Stadthagen; T. Tutton; T.S.S. Thiesen, Scheel, and Sell ; V. Voigt ; V1. Villari ; Vn. Vincent.

[^9]: * Heat developed on diluting $\mathrm{NH}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ to $\mathrm{NH}_{3} \cdot 200 \mathrm{H}_{2} \mathrm{O}$ (Berthelot).

[^10]: * Mean of six observers ; A.R., Ampola and Rinnatori, 1897 ; B., Berthelot; C., Colson; E., Eykman, 1889 ; F., Fischer; G., Griffiths (who used 0.0005 to o.02 normal sugar solutions) ; L., Lespieau, 1894; P., Paternó, 1889 ; Pe., Pettersson ; P M., Paternò and Muntemartini, 1894 ; P.W., Pettersson and Widman ; R., Raoult; T., Tolloczko, 1899.

[^11]: * White light. † Violet light. $\mu=\mathrm{r} 00205$ for red light. Iodine shows anomalous dispersion. C. \& M., Cuthbertson \& Metcalfe ; P. \& M.; Prideaux \& Metcalfe.

[^12]: * Langley, 1900.
 \ddagger Oxygen in earth's atmos.
 \dagger Emission line in chromosphere alone.
 § Wood, 19II. || X and γ rays 8.4 to 00\%.

[^13]: * The molecular weight of cane-sugar is 342 ; which, after conversion to invert sugar, becomes 360. Hence the new concentration of the invert sugar solution is $\frac{36}{34} c$, where c is the number of grams of cane-sugar in 100 c.cs. of the original solution.

[^14]: * National Physical Laboratory.
 \dagger Phillips.
 \ddagger In dark.
 § Wick, 1908.

[^15]: * High conductivity annealed commercial. $\quad+\mathrm{R}_{t}=\mathrm{R}_{0}\left(\mathrm{I}+{ }^{\circ} \mathrm{O}_{3} 88 t+{ }^{\circ} \mathrm{O}_{5} t^{2}\right)$-Smith (N. P. L.), 1904. \ddagger N. P. L. § Most samples of manganin have a zero temp. coeff. at from $30^{\circ} \mathrm{C}$. to $40^{\circ} \mathrm{C}$.

[^16]: A.C.P., Ann. de Chim. et de Phys. ; C.R., Compt. Rend.; P.M., Phil. Mag.; P.R:S,, Proc. Roy. Soc. ; P.T., Phil. Trans.

[^17]: स.d.P., An̄̈. det Thys.; P.M., Phil. Mag.; P.R.S., Proc. Roy. Soc.; P.Z., Phys. Zeit.;

[^18]: A.d.P., Ann. der Phys.; As. Fl., Astrophy. Fourn.; C.R., Compt. Rend.; PsM., Phil.

[^19]: A.F.S., Amer. Yourn. Sci.; 7.A.C.S., Fourn. Amer. Chem. Soc.; P.M., Phil. Mag.; P.R.S., I'roc. R'oy. Soc.; P.Z., I'hys. Zeit.

[^20]: * Under chlorine at $1520 \mathrm{mms} . \quad \dagger$ Rupert, 1909. dec. or decomp. $=$ decomposes ; liq. = liquid; r. ht. = red heat ; subl. = sublimes; v. = very ; $\infty=$ soluble in all proportions.

[^21]: * Mackintosh, 1907^{7}; decomp. $=$ decomposes ; 1., = lævo-rotatory (see p. 78). Y., Young, Fourn. de Phys., Jan., 1909.

